Spread and Spectral Complexity in Quantum Spin Chains: from Integrability to Chaos
- URL: http://arxiv.org/abs/2405.11254v2
- Date: Mon, 3 Jun 2024 11:41:18 GMT
- Title: Spread and Spectral Complexity in Quantum Spin Chains: from Integrability to Chaos
- Authors: Hugo A. Camargo, Kyoung-Bum Huh, Viktor Jahnke, Hyun-Sik Jeong, Keun-Young Kim, Mitsuhiro Nishida,
- Abstract summary: We explore spread and spectral complexity in quantum systems that exhibit a transition from integrability to chaos.
We find that the saturation value of spread complexity post-peak depends not only on the spectral statistics of the Hamiltonian, but also on the specific state.
We conjecture that the thermofield double state (TFD) is suitable for probing signatures of chaos in quantum many-body systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore spread and spectral complexity in quantum systems that exhibit a transition from integrability to chaos, namely the mixed-field Ising model and the next-to-nearest-neighbor deformation of the Heisenberg XXZ spin chain. We corroborate the observation that the presence of a peak in spread complexity before its saturation, is a characteristic feature in chaotic systems. We find that, in general, the saturation value of spread complexity post-peak depends not only on the spectral statistics of the Hamiltonian, but also on the specific state. However, there appears to be a maximal universal bound determined by the symmetries and dimension of the Hamiltonian, which is realized by the thermofield double state (TFD) at infinite temperature. We also find that the time scales at which the spread complexity and spectral form factor change their behaviour agree with each other and are independent of the chaotic properties of the systems. In the case of spectral complexity, we identify that the key factor determining its saturation value and timescale in chaotic systems is given by minimum energy difference in the theory's spectrum. This explains observations made in the literature regarding its earlier saturation in chaotic systems compared to their integrable counterparts. We conclude by discussing the properties of the TFD which, we conjecture, make it suitable for probing signatures of chaos in quantum many-body systems.
Related papers
- Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Quantum chaos, integrability, and late times in the Krylov basis [0.8287206589886881]
Quantum chaotic systems are conjectured to display a spectrum whose fine-grained features are well described by Random Matrix Theory (RMT)
We show that for Haar-random initial states in RMTs the mean and covariance of the Lanczos spectrum suffices to produce the full long time behavior of general survival probabilities.
This analysis suggests a notion of eigenstate complexity, the statistics of which differentiate integrable systems and classes of quantum chaos.
arXiv Detail & Related papers (2023-12-06T19:02:22Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Quantum chaos and the complexity of spread of states [0.0]
We propose a measure of quantum state complexity defined by minimizing the spread of the wave-function over all choices of basis.
Our measure is controlled by the "survival amplitude" for a state to remain unchanged, and can be efficiently computed in theories with discrete spectra.
arXiv Detail & Related papers (2022-02-14T19:00:00Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z) - Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving [0.0]
We study the time evolution operator in a family of local quantum circuits with random fields in a fixed direction.
We show that for the systems under consideration the generalised spectral form factor can be expressed in terms of dynamical correlation functions.
This also provides a connection between the many-body Thouless time $tau_rm th$ -- the time at which the generalised spectral form factor starts following the random matrix theory prediction -- and the conservation laws of the system.
arXiv Detail & Related papers (2020-10-23T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.