論文の概要: GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models
- arxiv url: http://arxiv.org/abs/2405.20585v1
- Date: Fri, 31 May 2024 02:53:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:46:08.103615
- Title: GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models
- Title(参考訳): GAMedX: 大規模言語モデルを用いたAIベースの医療エンティティデータエクストラクタ
- Authors: Mohammed-Khalil Ghali, Abdelrahman Farrag, Hajar Sakai, Hicham El Baz, Yu Jin, Sarah Lam,
- Abstract要約: 本稿では,Large Language Models(LLMs)を利用した名前付きエンティティ認識(NER)アプローチであるGAMedXを紹介する。
この方法論は、NERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖プロンプトとピダンティックスキーマを構造化出力に利用している。
その結果, 評価データセットの1つに対して, 98%の精度でROUGE F1の有意なスコアが得られた。
- 参考スコア(独自算出の注目度): 1.123722364748134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving field of healthcare and beyond, the integration of generative AI in Electronic Health Records (EHRs) represents a pivotal advancement, addressing a critical gap in current information extraction techniques. This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs) to efficiently extract entities from medical narratives and unstructured text generated throughout various phases of the patient hospital visit. By addressing the significant challenge of processing unstructured medical text, GAMedX leverages the capabilities of generative AI and LLMs for improved data extraction. Employing a unified approach, the methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon. The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98\%. This innovation enhances entity extraction, offering a scalable, cost-effective solution for automated forms filling from unstructured data. As a result, GAMedX streamlines the processing of unstructured narratives, and sets a new standard in NER applications, contributing significantly to theoretical and practical advancements beyond the medical technology sphere.
- Abstract(参考訳): 医療などの急速に発展している分野では、電子健康記録(EHR)における生成AIの統合は重要な進歩であり、現在の情報抽出技術における重要なギャップに対処している。
本稿では,大規模言語モデル (LLMs) を用いた名前付きエンティティ認識 (NER) アプローチであるGAMedXについて紹介する。
構造化されていない医療テキストを処理するという大きな課題に対処することで、GAMedXは生成AIとLLMの能力を活用してデータ抽出を改善する。
統一されたアプローチを用いることで、この方法論はNERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖したプロンプトとピダンティックスキーマを構造化された出力に利用する。
その結果, 評価データセットの1つに対して, ROUGE F1スコアが98\%の有意な値を示した。
このイノベーションはエンティティ抽出を強化し、非構造化データから自動フォームを埋めるスケーラブルで費用対効果の高いソリューションを提供する。
その結果、GAMedXは構造化されていない物語の処理を合理化し、NERアプリケーションにおける新しい標準を設定し、医療技術以外の理論的および実践的な進歩に大きく貢献した。
関連論文リスト
- Knowledge Graph-Driven Retrieval-Augmented Generation: Integrating Deepseek-R1 with Weaviate for Advanced Chatbot Applications [45.935798913942904]
構造化バイオメディカル知識と大規模言語モデル(LLM)を組み合わせた革新的なフレームワークを提案する。
本システムでは,年齢関連黄斑変性(AMD)に関する医学的要約から因果関係を同定・精査し,詳細な知識グラフを作成する。
ベクトルベース検索と局所展開言語モデルを用いて,臨床証拠を直接参照して,文脈的に関連性があり,検証可能な応答を生成する。
論文 参考訳(メタデータ) (2025-02-16T12:52:28Z) - GENIE: Generative Note Information Extraction model for structuring EHR data [14.057531175321113]
生成ノート情報抽出システムGENIEを紹介する。
GENIEは1つのパスで全段落を処理し、エンティティ、アサーションステータス、ロケーション、修飾子、値、目的を高精度に抽出する。
堅牢なデータ準備パイプラインと微調整された小型LLMを使用して、GENIEは複数の情報抽出タスク間での競合性能を実現する。
論文 参考訳(メタデータ) (2025-01-30T15:42:24Z) - MRGen: Diffusion-based Controllable Data Engine for MRI Segmentation towards Unannotated Modalities [59.61465292965639]
本稿では,医療応用における生成モデルを活用するための新しいパラダイムについて検討する。
本稿では,テキストプロンプトとマスクに条件付き生成を可能にするMRGenという拡散型データエンジンを提案する。
論文 参考訳(メタデータ) (2024-12-04T16:34:22Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP [9.432205523734707]
医療用語を患者に親しみやすい平易な言語に簡略化することを目的とした,レイ定義の自動生成という新たなタスクを導入する。
このデータセットは、5万以上のユニークな(医療用語、日常の定義)ペアと30万の言及からなる。
また、データフィルタリング、拡張、選択を相乗化してデータ品質を改善する、データ中心のHuman-AIパイプラインも開発しました。
論文 参考訳(メタデータ) (2023-12-24T23:01:00Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - Advancing Italian Biomedical Information Extraction with
Transformers-based Models: Methodological Insights and Multicenter Practical
Application [0.27027468002793437]
インフォメーション抽出は、自動化されたテキストマイニングパイプラインを使用することで、臨床実践者が限界を克服するのに役立つ。
我々は、最初のイタリアの神経心理学的名前付きエンティティ認識データセットであるPsyNITを作成し、それをトランスフォーマーベースのモデルの開発に利用した。
i)一貫性のあるアノテーションプロセスの重要な役割と(ii)古典的なメソッドと“低リソース”なアプローチを組み合わせた微調整戦略です。
論文 参考訳(メタデータ) (2023-06-08T16:15:46Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。