Unlock the Power of Algorithm Features: A Generalization Analysis for Algorithm Selection
- URL: http://arxiv.org/abs/2405.11349v2
- Date: Mon, 3 Jun 2024 12:55:58 GMT
- Title: Unlock the Power of Algorithm Features: A Generalization Analysis for Algorithm Selection
- Authors: Xingyu Wu, Yan Zhong, Jibin Wu, Yuxiao Huang, Sheng-hao Wu, Kay Chen Tan,
- Abstract summary: We propose the first provable guarantee for algorithm selection based on algorithm features.
We analyze the benefits and costs associated with algorithm features and investigate how the generalization error is affected by different factors.
- Score: 25.29451529910051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the algorithm selection research, the discussion surrounding algorithm features has been significantly overshadowed by the emphasis on problem features. Although a few empirical studies have yielded evidence regarding the effectiveness of algorithm features, the potential benefits of incorporating algorithm features into algorithm selection models and their suitability for different scenarios remain unclear. In this paper, we address this gap by proposing the first provable guarantee for algorithm selection based on algorithm features, taking a generalization perspective. We analyze the benefits and costs associated with algorithm features and investigate how the generalization error is affected by different factors. Specifically, we examine adaptive and predefined algorithm features under transductive and inductive learning paradigms, respectively, and derive upper bounds for the generalization error based on their model's Rademacher complexity. Our theoretical findings not only provide tight upper bounds, but also offer analytical insights into the impact of various factors, such as the training scale of problem instances and candidate algorithms, model parameters, feature values, and distributional differences between the training and test data. Notably, we demonstrate how models will benefit from algorithm features in complex scenarios involving many algorithms, and proves the positive correlation between generalization error bound and $\chi^2$-divergence of distributions.
Related papers
- A Survey of Meta-features Used for Automated Selection of Algorithms for Black-box Single-objective Continuous Optimization [4.173197621837912]
We conduct an overview of the key contributions to algorithm selection in the field of single-objective continuous black-box optimization.
We study machine learning models for automated algorithm selection, configuration, and performance prediction.
arXiv Detail & Related papers (2024-06-08T11:11:14Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
We present a novel hierarchical federated learning algorithm that incorporates quantization for communication-efficiency.
We offer a comprehensive analytical framework to evaluate its optimality gap and convergence rate.
Our findings reveal that our algorithm consistently achieves high learning accuracy over a range of parameters.
arXiv Detail & Related papers (2024-03-03T15:40:24Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Identifying Co-Adaptation of Algorithmic and Implementational
Innovations in Deep Reinforcement Learning: A Taxonomy and Case Study of
Inference-based Algorithms [15.338931971492288]
We focus on a series of inference-based actor-critic algorithms to decouple their algorithmic innovations and implementation decisions.
We identify substantial performance drops whenever implementation details are mismatched for algorithmic choices.
Results show which implementation details are co-adapted and co-evolved with algorithms.
arXiv Detail & Related papers (2021-03-31T17:55:20Z) - Algorithmic Stability and Generalization of an Unsupervised Feature
Selection Algorithm [20.564573628659918]
Algorithmic stability is a key characteristic of an algorithm regarding its sensitivity to perturbations of input samples.
In this paper, we propose an innovative unsupervised feature selection algorithm attaining this stability with provable guarantees.
arXiv Detail & Related papers (2020-10-19T12:25:39Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.