Quantum Neural Networks for Solving Power System Transient Simulation Problem
- URL: http://arxiv.org/abs/2405.11427v1
- Date: Sun, 19 May 2024 02:18:04 GMT
- Title: Quantum Neural Networks for Solving Power System Transient Simulation Problem
- Authors: Mohammadreza Soltaninia, Junpeng Zhan,
- Abstract summary: We introduce two novel Quantum Neural Networks (QNNs), proposing them as effective alternatives to conventional simulation techniques.
Our application of these QNNs successfully simulates two small power systems, demonstrating their potential to achieve good accuracy.
This research marks a pioneering effort in applying quantum computing to power system simulations but also expands the potential of quantum technologies in addressing intricate engineering challenges.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing, leveraging principles of quantum mechanics, represents a transformative approach in computational methodologies, offering significant enhancements over traditional classical systems. This study tackles the complex and computationally demanding task of simulating power system transients through solving differential algebraic equations (DAEs). We introduce two novel Quantum Neural Networks (QNNs): the Sinusoidal-Friendly QNN and the Polynomial-Friendly QNN, proposing them as effective alternatives to conventional simulation techniques. Our application of these QNNs successfully simulates two small power systems, demonstrating their potential to achieve good accuracy. We further explore various configurations, including time intervals, training points, and the selection of classical optimizers, to optimize the solving of DAEs using QNNs. This research not only marks a pioneering effort in applying quantum computing to power system simulations but also expands the potential of quantum technologies in addressing intricate engineering challenges.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Multi-reference Quantum Davidson Algorithm for Quantum Dynamics [3.3869539907606603]
Quantum Krylov Subspace (QKS) methods have been developed, enhancing the ability to perform accelerated simulations on noisy intermediate-scale quantum computers.
We introduce and evaluate two QKS methods derived from the QDavidson algorithm, a novel approach for determining the ground and excited states of many-body systems.
arXiv Detail & Related papers (2024-06-12T22:30:52Z) - A Hybrid Quantum-Classical Physics-Informed Neural Network Architecture for Solving Quantum Optimal Control Problems [1.4811951486536687]
The study showcases an innovative approach to optimizing quantum state manipulations.
The proposed hybrid model effectively applies machine learning techniques to solve optimal control problems.
This is illustrated through the design and implementation of a hybrid PINN network to solve a quantum state transition problem.
arXiv Detail & Related papers (2024-04-23T13:22:22Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
arXiv Detail & Related papers (2024-03-05T20:23:25Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.