Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm
- URL: http://arxiv.org/abs/2403.03310v1
- Date: Tue, 5 Mar 2024 20:23:25 GMT
- Title: Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm
- Authors: Zhiding Liang, Gang Liu, Zheyuan Liu, Jinglei Cheng, Tianyi Hao,
Kecheng Liu, Hang Ren, Zhixin Song, Ji Liu, Fanny Ye, Yiyu Shi
- Abstract summary: Quantum Approximate Optimization (QAOA) stands out for its potential to efficiently solve the Max-Cut problem.
We use Graph Neural Networks (GNN) as a warm-start technique to optimize QAOA, using GNN as a warm-start technique.
Our findings show GNN's potential in improving QAOA performance, opening new avenues for hybrid quantum-classical approaches in quantum computing.
- Score: 14.554010382366302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, quantum computing has emerged as a transformative force in
the field of combinatorial optimization, offering novel approaches to tackling
complex problems that have long challenged classical computational methods.
Among these, the Quantum Approximate Optimization Algorithm (QAOA) stands out
for its potential to efficiently solve the Max-Cut problem, a quintessential
example of combinatorial optimization. However, practical application faces
challenges due to current limitations on quantum computational resource. Our
work optimizes QAOA initialization, using Graph Neural Networks (GNN) as a
warm-start technique. This sacrifices affordable computational resource on
classical computer to reduce quantum computational resource overhead, enhancing
QAOA's effectiveness. Experiments with various GNN architectures demonstrate
the adaptability and stability of our framework, highlighting the synergy
between quantum algorithms and machine learning. Our findings show GNN's
potential in improving QAOA performance, opening new avenues for hybrid
quantum-classical approaches in quantum computing and contributing to practical
applications.
Related papers
- Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems.
We evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization.
arXiv Detail & Related papers (2024-10-21T04:10:54Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
Variational Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems.
This paper explores the current state and recent developments of VQAs, emphasizing their applicability to Approximate optimization.
We implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes.
arXiv Detail & Related papers (2024-07-08T22:02:39Z) - Quantum Graph Optimization Algorithm [7.788671046805509]
This study introduces a novel variational quantum graph optimization algorithm that integrates the message-passing mechanism.
In terms of scalability on QUBO tasks, our algorithm shows superior performance compared to QAOA.
arXiv Detail & Related papers (2024-04-09T16:25:07Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms for optimization problems.
Our approach leverages quantum resources to obtain information that is used in problem-specific classical reduction steps.
We use backtracking techniques to further improve the performance of the algorithm without increasing the requirements on the quantum hardware.
arXiv Detail & Related papers (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years.
Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-Cut problems.
This is used to guide the development of an advanced benchmarking framework for quantum computers.
arXiv Detail & Related papers (2023-02-05T01:56:06Z) - DQC$^2$O: Distributed Quantum Computing for Collaborative Optimization
in Future Networks [54.03701670739067]
We propose an adaptive distributed quantum computing approach to manage quantum computers and quantum channels for solving optimization tasks in future networks.
Based on the proposed approach, we discuss the potential applications for collaborative optimization in future networks, such as smart grid management, IoT cooperation, and UAV trajectory planning.
arXiv Detail & Related papers (2022-09-16T02:44:52Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.