VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting
- URL: http://arxiv.org/abs/2405.11470v1
- Date: Sun, 19 May 2024 07:39:22 GMT
- Title: VCformer: Variable Correlation Transformer with Inherent Lagged Correlation for Multivariate Time Series Forecasting
- Authors: Yingnan Yang, Qingling Zhu, Jianyong Chen,
- Abstract summary: We propose Variable Correlation Transformer (VCformer) to mine the correlations among variables.
VCA calculates and integrates the cross-correlation scores corresponding to different lags between queries and keys.
Inspired by Koopman dynamics theory, we also develop Koopman Temporal Detector (KTD) to better address the non-stationarity in time series.
- Score: 1.5165632546654102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series (MTS) forecasting has been extensively applied across diverse domains, such as weather prediction and energy consumption. However, current studies still rely on the vanilla point-wise self-attention mechanism to capture cross-variable dependencies, which is inadequate in extracting the intricate cross-correlation implied between variables. To fill this gap, we propose Variable Correlation Transformer (VCformer), which utilizes Variable Correlation Attention (VCA) module to mine the correlations among variables. Specifically, based on the stochastic process theory, VCA calculates and integrates the cross-correlation scores corresponding to different lags between queries and keys, thereby enhancing its ability to uncover multivariate relationships. Additionally, inspired by Koopman dynamics theory, we also develop Koopman Temporal Detector (KTD) to better address the non-stationarity in time series. The two key components enable VCformer to extract both multivariate correlations and temporal dependencies. Our extensive experiments on eight real-world datasets demonstrate the effectiveness of VCformer, achieving top-tier performance compared to other state-of-the-art baseline models. Code is available at this repository: https://github.com/CSyyn/VCformer.
Related papers
- TimeCNN: Refining Cross-Variable Interaction on Time Point for Time Series Forecasting [44.04862924157323]
Transformer-based models demonstrate significant potential in modeling cross-time and cross-variable interaction.
We propose a TimeCNN model to refine cross-variable interactions to enhance time series forecasting.
Extensive experiments conducted on 12 real-world datasets demonstrate that TimeCNN consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-10-07T09:16:58Z) - TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics [5.016178141636157]
TiVaT (Time-Variable Transformer) is a novel architecture that integrates temporal and variable dependencies.
TiVaT consistently delivers strong performance across diverse datasets.
This positions TiVaT as a new benchmark in MTS forecasting, particularly in handling datasets characterized by intricate and challenging dependencies.
arXiv Detail & Related papers (2024-10-02T13:24:24Z) - VE: Modeling Multivariate Time Series Correlation with Variate Embedding [0.4893345190925178]
Current channel-independent (CI) models and models with a CI final projection layer are unable to capture correlations.
We present the variate embedding (VE) pipeline, which learns a unique and consistent embedding for each variate.
The VE pipeline can be integrated into any model with a CI final projection layer to improve multivariate forecasting.
arXiv Detail & Related papers (2024-09-10T02:49:30Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - Leveraging 2D Information for Long-term Time Series Forecasting with Vanilla Transformers [55.475142494272724]
Time series prediction is crucial for understanding and forecasting complex dynamics in various domains.
We introduce GridTST, a model that combines the benefits of two approaches using innovative multi-directional attentions.
The model consistently delivers state-of-the-art performance across various real-world datasets.
arXiv Detail & Related papers (2024-05-22T16:41:21Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Correlation-aware Unsupervised Change-point Detection via Graph Neural
Networks [37.68666658785003]
Change-point detection (CPD) aims to detect abrupt changes over time series data.
Existing CPD methods either ignore the dependency structures entirely or rely on the (unrealistic) assumption that the correlation structures are static over time.
We propose a Correlation-aware Dynamics Model for CPD, which explicitly models the correlation structure and dynamics of variables.
arXiv Detail & Related papers (2020-04-24T18:28:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.