論文の概要: Adaptive Online Experimental Design for Causal Discovery
- arxiv url: http://arxiv.org/abs/2405.11548v3
- Date: Sat, 22 Jun 2024 07:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:43:06.877107
- Title: Adaptive Online Experimental Design for Causal Discovery
- Title(参考訳): 因果発見のための適応型オンライン実験設計
- Authors: Muhammad Qasim Elahi, Lai Wei, Murat Kocaoglu, Mahsa Ghasemi,
- Abstract要約: 因果発見は因果グラフに符号化された因果関係を明らかにすることを目的としている。
オンライン学習の観点から,データの介入効率に着目し,因果発見を形式化する。
グラフ分離システムから介入を適応的に選択するトラック・アンド・ストップ因果探索アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 9.447864414136905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal discovery aims to uncover cause-and-effect relationships encoded in causal graphs by leveraging observational, interventional data, or their combination. The majority of existing causal discovery methods are developed assuming infinite interventional data. We focus on data interventional efficiency and formalize causal discovery from the perspective of online learning, inspired by pure exploration in bandit problems. A graph separating system, consisting of interventions that cut every edge of the graph at least once, is sufficient for learning causal graphs when infinite interventional data is available, even in the worst case. We propose a track-and-stop causal discovery algorithm that adaptively selects interventions from the graph separating system via allocation matching and learns the causal graph based on sampling history. Given any desired confidence value, the algorithm determines a termination condition and runs until it is met. We analyze the algorithm to establish a problem-dependent upper bound on the expected number of required interventional samples. Our proposed algorithm outperforms existing methods in simulations across various randomly generated causal graphs. It achieves higher accuracy, measured by the structural hamming distance (SHD) between the learned causal graph and the ground truth, with significantly fewer samples.
- Abstract(参考訳): 因果発見は、観察データ、介入データ、またはそれらの組み合わせを利用して因果グラフに符号化された因果関係を明らかにすることを目的としている。
既存の因果発見法の大部分は、無限の介入データを想定して開発されている。
我々は、データ介入効率に重点を置き、オンライン学習の観点から因果発見を形式化し、バンドイット問題における純粋な探索から着想を得た。
グラフのすべてのエッジを少なくとも一度は切断する介入からなるグラフ分離システムは、最悪の場合であっても無限の介入データが利用できる場合に因果グラフを学習するのに十分である。
本稿では,グラフ分離システムからの介入をアロケーションマッチングにより適応的に選択し,サンプリング履歴に基づいて因果グラフを学習するトラック・アンド・ストップ因果探索アルゴリズムを提案する。
任意の信頼度が与えられた場合、アルゴリズムは終了条件を決定し、それを満たすまで実行させる。
本稿では,提案アルゴリズムを解析し,必要な介入サンプルの期待数に基づいて問題依存上界を確立する。
提案アルゴリズムは,様々なランダムに生成した因果グラフのシミュレーションにおいて,既存の手法よりも優れている。
学習した因果グラフと地上の真理の間の構造的ハミング距離(SHD)によって測定され、試料は著しく少ない。
関連論文リスト
- Sample Efficient Bayesian Learning of Causal Graphs from Interventions [6.823521786512908]
本研究では,限られた介入サンプルを用いた因果グラフ学習におけるベイズ的アプローチについて考察する。
我々は,提案アルゴリズムが真の因果グラフを高い確率で返すことを理論的に示す。
本稿では,このアルゴリズムを,グラフ全体を学習することなく,より一般的な因果問題にどう対応できるかを示すケーススタディを提案する。
論文 参考訳(メタデータ) (2024-10-26T05:47:56Z) - Predicting perturbation targets with causal differential networks [23.568795598997376]
我々は、因果グラフを観察および介入データセットから推定するために、償却因果探索モデルを用いる。
我々は、これらのペアグラフを、教師付き学習フレームワークで介入された変数の集合にマッピングすることを学ぶ。
このアプローチは、7つのシングルセルトランスクリプトミクスデータセットの摂動モデリングのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-10-04T12:48:21Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
本研究では, 因果表現学習, 潜伏因果変数を推定するタスク, およびそれらの変数の混合から因果関係を考察する。
我々のゴールは、根底にある真理潜入者とその因果グラフの両方を、介入データから解決不可能なあいまいさの集合まで識別することである。
論文 参考訳(メタデータ) (2023-06-01T10:51:58Z) - Subset verification and search algorithms for causal DAGs [13.108039226223793]
エッジのサブセット(ターゲットエッジ)間の因果関係を学習するために必要な最小の介入セットを特定する問題について検討する。
介入因果グラフのいくつかの興味深い構造的特性を証明し、ここで研究されるサブセット検証・探索問題以外の応用があると信じている。
論文 参考訳(メタデータ) (2023-01-09T06:25:44Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Large-Scale Differentiable Causal Discovery of Factor Graphs [3.8015092217142223]
本稿では,非線形低ランク因果相互作用モデルへの探索空間の方法として,因子指向非巡回グラフ(f-DAG)の概念を導入する。
本稿では,f-DAG制約因果探索のスケーラブルな実装を提案する。
論文 参考訳(メタデータ) (2022-06-15T21:28:36Z) - Active Bayesian Causal Inference [72.70593653185078]
因果発見と推論を統合するための完全ベイズ能動学習フレームワークであるアクティブベイズ因果推論(ABCI)を提案する。
ABCIは因果関係のモデルと関心のクエリを共同で推論する。
我々のアプローチは、完全な因果グラフの学習のみに焦点を当てた、いくつかのベースラインよりも、よりデータ効率が高いことを示す。
論文 参考訳(メタデータ) (2022-06-04T22:38:57Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。