論文の概要: Sample Efficient Bayesian Learning of Causal Graphs from Interventions
- arxiv url: http://arxiv.org/abs/2410.20089v1
- Date: Sat, 26 Oct 2024 05:47:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:20:25.613541
- Title: Sample Efficient Bayesian Learning of Causal Graphs from Interventions
- Title(参考訳): 干渉による因果グラフのベイズ学習
- Authors: Zihan Zhou, Muhammad Qasim Elahi, Murat Kocaoglu,
- Abstract要約: 本研究では,限られた介入サンプルを用いた因果グラフ学習におけるベイズ的アプローチについて考察する。
我々は,提案アルゴリズムが真の因果グラフを高い確率で返すことを理論的に示す。
本稿では,このアルゴリズムを,グラフ全体を学習することなく,より一般的な因果問題にどう対応できるかを示すケーススタディを提案する。
- 参考スコア(独自算出の注目度): 6.823521786512908
- License:
- Abstract: Causal discovery is a fundamental problem with applications spanning various areas in science and engineering. It is well understood that solely using observational data, one can only orient the causal graph up to its Markov equivalence class, necessitating interventional data to learn the complete causal graph. Most works in the literature design causal discovery policies with perfect interventions, i.e., they have access to infinite interventional samples. This study considers a Bayesian approach for learning causal graphs with limited interventional samples, mirroring real-world scenarios where such samples are usually costly to obtain. By leveraging the recent result of Wien\"obst et al. (2023) on uniform DAG sampling in polynomial time, we can efficiently enumerate all the cut configurations and their corresponding interventional distributions of a target set, and further track their posteriors. Given any number of interventional samples, our proposed algorithm randomly intervenes on a set of target vertices that cut all the edges in the graph and returns a causal graph according to the posterior of each target set. When the number of interventional samples is large enough, we show theoretically that our proposed algorithm will return the true causal graph with high probability. We compare our algorithm against various baseline methods on simulated datasets, demonstrating its superior accuracy measured by the structural Hamming distance between the learned DAG and the ground truth. Additionally, we present a case study showing how this algorithm could be modified to answer more general causal questions without learning the whole graph. As an example, we illustrate that our method can be used to estimate the causal effect of a variable that cannot be intervened.
- Abstract(参考訳): 因果発見は、科学と工学の様々な領域にまたがる応用における根本的な問題である。
観察データのみを用いることで、因果グラフをマルコフ同値クラスまでのみオリエント化することができ、完全な因果グラフを学ぶためには介入データを必要とすることがよく理解されている。
文献におけるほとんどの研究は、完全な介入を伴う因果発見ポリシー、すなわち無限の介入サンプルへのアクセスを設計している。
本研究では,限られた介入サンプルを持つ因果グラフを学習するためのベイズ的アプローチを考察し,そのようなサンプルが通常入手するのにコストがかかる実世界のシナリオを反映する。
多項式時間における一様DAGサンプリングにおけるWien\obst et al (2023) の最近の結果を活用することにより、対象集合のすべての切断構成と対応する介入分布を効率的に列挙し、さらに後部を追跡できる。
任意の介入サンプルが与えられた場合、提案アルゴリズムは、グラフのすべてのエッジを切断し、各ターゲットセットの後方に応じて因果グラフを返す一連の対象頂点にランダムに介入する。
介入サンプルの数が十分に大きい場合、提案アルゴリズムが真の因果グラフを高い確率で返すことを理論的に示す。
我々は,本アルゴリズムをシミュレーションデータセット上の様々なベースライン手法と比較し,学習されたDAGと基底真理の間の構造的ハミング距離によって測定された精度を検証した。
さらに、このアルゴリズムがグラフ全体を学習することなく、より一般的な因果問題にどう対処できるかを示すケーススタディを示す。
例として,本手法は介入できない変数の因果効果を推定するために有効であることを示す。
関連論文リスト
- Predicting perturbation targets with causal differential networks [23.568795598997376]
我々は、因果グラフを観察および介入データセットから推定するために、償却因果探索モデルを用いる。
我々は、これらのペアグラフを、教師付き学習フレームワークで介入された変数の集合にマッピングすることを学ぶ。
このアプローチは、7つのシングルセルトランスクリプトミクスデータセットの摂動モデリングのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-10-04T12:48:21Z) - Scalable and Flexible Causal Discovery with an Efficient Test for Adjacency [48.769884734826974]
因果グラフに2つの変数が隣接しているかどうかを評価するために,スケーラブルで柔軟な手法を構築した。
微分可能隣接テストは指数関数的な数のテストを、証明可能な等価な緩和問題に置き換える。
DAT, DAT-Graphに基づくグラフ学習手法も構築し, 介入したデータから学習する。
論文 参考訳(メタデータ) (2024-06-13T14:39:40Z) - Adaptive Online Experimental Design for Causal Discovery [9.447864414136905]
因果発見は因果グラフに符号化された因果関係を明らかにすることを目的としている。
オンライン学習の観点から,データの介入効率に着目し,因果発見を形式化する。
グラフ分離システムから介入を適応的に選択するトラック・アンド・ストップ因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-19T13:26:33Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
グラフニューラルネットワーク(GNN)は,グラフ特性の分類において異常な性能を示した。
トレーニングとテストデータの選択バイアスが原因で、分散偏差が広まっています。
仮想サンプルの分布偏差を測定するためのOODキャリブレーションを提案する。
論文 参考訳(メタデータ) (2023-08-16T13:10:27Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - Subset verification and search algorithms for causal DAGs [13.108039226223793]
エッジのサブセット(ターゲットエッジ)間の因果関係を学習するために必要な最小の介入セットを特定する問題について検討する。
介入因果グラフのいくつかの興味深い構造的特性を証明し、ここで研究されるサブセット検証・探索問題以外の応用があると信じている。
論文 参考訳(メタデータ) (2023-01-09T06:25:44Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
ゲノミクスのような特定の環境では、不均一な研究条件からのデータがあり、研究変数のサブセットのみに関連するソフトな(部分的な)介入がある。
観察データと介入データとの混合に対する介入BGeスコアを定義し,介入の目的と効果が不明である可能性がある。
論文 参考訳(メタデータ) (2022-05-05T12:32:08Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。