論文の概要: Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.11566v1
- Date: Sun, 19 May 2024 14:30:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 15:12:36.339661
- Title: Uncertainty-Aware PPG-2-ECG for Enhanced Cardiovascular Diagnosis using Diffusion Models
- Title(参考訳): 拡散モデルを用いた心血管診断のための不確かさを意識したPTG-2-ECG
- Authors: Omer Belhasin, Idan Kligvasser, George Leifman, Regev Cohen, Erin Rainaldi, Li-Fang Cheng, Nishant Verma, Paul Varghese, Ehud Rivlin, Michael Elad,
- Abstract要約: 光胸腺造影(英: Photoplethysmography, PPG)は、血液の体積変動を測定する光学的信号である。
ECGはより包括的な情報を提供し、心臓の状態をより正確に検出することができる。
本稿では, PPG-2-ECG変換に対処する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 16.03166435894744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing the cardiovascular system condition via Electrocardiography (ECG) is a common and highly effective approach, and it has been practiced and perfected over many decades. ECG sensing is non-invasive and relatively easy to acquire, and yet it is still cumbersome for holter monitoring tests that may span over hours and even days. A possible alternative in this context is Photoplethysmography (PPG): An optically-based signal that measures blood volume fluctuations, as typically sensed by conventional ``wearable devices''. While PPG presents clear advantages in acquisition, convenience, and cost-effectiveness, ECG provides more comprehensive information, allowing for a more precise detection of heart conditions. This implies that a conversion from PPG to ECG, as recently discussed in the literature, inherently involves an unavoidable level of uncertainty. In this paper we introduce a novel methodology for addressing the PPG-2-ECG conversion, and offer an enhanced classification of cardiovascular conditions using the given PPG, all while taking into account the uncertainties arising from the conversion process. We provide a mathematical justification for our proposed computational approach, and present empirical studies demonstrating its superior performance compared to state-of-the-art baseline methods.
- Abstract(参考訳): 心電図(ECG)を用いて心血管系の状態を解析することは、一般的な、非常に効果的なアプローチであり、長年にわたって実践され、完成されてきた。
ECGの検知は非侵襲的であり、比較的容易に取得できるが、何時間も何日もかかるホルターのモニタリングテストは、いまだに面倒だ。
この文脈で考えられる代替手段はフォトプレチスモグラフィ (PPG: Photoplethysmography) である。
PPGは、買収、利便性、コスト効率において明らかな優位性を示すが、ECGはより包括的な情報を提供し、より正確な心臓状態の検出を可能にしている。
これは PPG から ECG への変換が、文献で最近論じられたように、本質的には避けられないレベルの不確実性を伴うことを意味する。
本稿では, PPG-2-ECG変換に対処する新しい手法を提案するとともに, 変換過程から生じる不確実性を考慮して, PPG-2-ECG変換を用いて心血管状態の高次分類を行う。
本稿では,提案手法の数学的正当性について述べるとともに,その性能を最先端のベースライン法と比較した実証的研究を行う。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling [11.617950008187366]
光胸腺造影法(英: Photoplethysmography, PPG)は、光学的手法を用いて心臓生理学を計測する費用効率の高い非侵襲的手法である。
本稿では,PPG信号を対応するECG波形に変換するために,主観非依存の注目に基づく深部状態空間モデル(ADSSM)を提案する。
論文 参考訳(メタデータ) (2023-09-27T03:07:46Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
犬心電図(ECG)の評価には熟練した獣医が必要である。
心電図の解釈と診断支援のための獣医師の現在の利用状況は限られている。
犬の心電図配列を正常または異常と分類するためのディープ畳み込みニューラルネットワーク(CNN)アプローチを実装した。
論文 参考訳(メタデータ) (2023-05-17T09:06:39Z) - Performer: A Novel PPG to ECG Reconstruction Transformer For a Digital
Biomarker of Cardiovascular Disease Detection [0.0]
心臓血管疾患(CVD)は死因の上位1つとなり、これらの死亡の4分の3は低所得層で発生している。
心電図 (ECG) は, ユーザ参加の必要性から, 連続心臓モニタリングには有効ではない。
フォトプレチスモグラフィーは容易に収集できるが、精度の制限により臨床応用は制限される。
論文 参考訳(メタデータ) (2022-04-25T17:10:13Z) - Runtime Monitoring and Statistical Approaches for Correlation Analysis
of ECG and PPG [3.9526036279093937]
ECGとPSGは同じ現象に「異なる窓」を与える信号である。
ECG と PPG は別々に使用されるが、異なる ECG と PPG の事象の正確な補正についての研究は行われていない。
本稿では,ECG と PPG 信号の鍵となる関係を正式に確立するための最初のアプローチを提案する。
論文 参考訳(メタデータ) (2022-01-20T08:01:45Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
心臓疾患の早期診断は, 肺高血圧, 心臓リズム障害, 血栓, 心不全, 突然の心停止などの合併症を予防するために重要である。
このような疾患を識別するために、心電図(PCG)および心電図(ECG)波形は重要な情報を伝達する。
本稿では,PCGとECGを同時取得したPhystoNet Challenge 2016データセットのサブセットを用いて,この仮説を評価する。
我々の新しいDual-Convolutional Neural Networkベースのアプローチは、トランスファーラーニングを使用して、一般公開されているPCGとECGの同時データ量に制限のある問題に対処する。
論文 参考訳(メタデータ) (2021-02-02T19:51:12Z) - CardioGAN: Attentive Generative Adversarial Network with Dual
Discriminators for Synthesis of ECG from PPG [25.305949034527202]
心電図(Electrocardiogram、ECG)は、心臓活動の電気的測定である。
光胸腺X線写真(英: Photoplethysmogram, PPG)は、血液循環の変化の光学的測定である。
本稿では、PSGを入力とし、ECGを出力として生成する逆モデルであるCardioGANを提案する。
論文 参考訳(メタデータ) (2020-09-30T20:49:30Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。