論文の概要: InterAct: Capture and Modelling of Realistic, Expressive and Interactive Activities between Two Persons in Daily Scenarios
- arxiv url: http://arxiv.org/abs/2405.11690v2
- Date: Mon, 27 May 2024 04:32:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 03:28:24.825669
- Title: InterAct: Capture and Modelling of Realistic, Expressive and Interactive Activities between Two Persons in Daily Scenarios
- Title(参考訳): InterAct: 日常シナリオにおける2人の現実的・表現的・対話的活動の獲得とモデル化
- Authors: Yinghao Huang, Leo Ho, Dafei Qin, Mingyi Shi, Taku Komura,
- Abstract要約: 我々は、2人の人物がシーケンス全体にわたって現実的なシナリオを実行する241のモーションシーケンスをキャプチャする。
両方の人の音声、身体の動き、表情はすべて、私たちのデータセットでキャプチャされます。
また,音声のみから2人の対話的動きを直接推定する拡散モデルに基づく最初のアプローチを示す。
- 参考スコア(独自算出の注目度): 12.300105542672163
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of accurate capture and expressive modelling of interactive behaviors happening between two persons in daily scenarios. Different from previous works which either only consider one person or focus on conversational gestures, we propose to simultaneously model the activities of two persons, and target objective-driven, dynamic, and coherent interactions which often span long duration. To this end, we capture a new dataset dubbed InterAct, which is composed of 241 motion sequences where two persons perform a realistic scenario over the whole sequence. The audios, body motions, and facial expressions of both persons are all captured in our dataset. We also demonstrate the first diffusion model based approach that directly estimates the interactive motions between two persons from their audios alone. All the data and code will be available at: https://hku-cg.github.io/interact.
- Abstract(参考訳): 本研究では,日常シナリオにおける2人の対話行動の正確なキャプチャと表現的モデリングの問題に対処する。
対話行動にのみ焦点をあてる以前の作品とは違い,2人の活動のモデル化と,長期にわたる客観的・動的・一貫性の相互作用を目標とすることを提案する。
この目的のために、我々はInterActと呼ばれる新しいデータセットをキャプチャし、241のモーションシーケンスで構成され、2人がシーケンス全体にわたって現実的なシナリオを実行する。
両方の人の音声、身体の動き、表情はすべて、私たちのデータセットでキャプチャされます。
また,音声のみから2人の対話的動きを直接推定する拡散モデルに基づく最初のアプローチを示す。
すべてのデータとコードは、https://hku-cg.github.io/interact.orgで利用可能になる。
関連論文リスト
- Versatile Motion Language Models for Multi-Turn Interactive Agents [28.736843383405603]
本稿では,言語と運動の両モードを統合したVersatile Interactive Motion言語モデルを提案する。
動作関連タスク,テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・テキスト・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声・音声
論文 参考訳(メタデータ) (2024-10-08T02:23:53Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
本稿では,デノナイズ拡散モデルに基づくテキスト制御されたシーン認識動作生成手法TeSMoを提案する。
我々のアプローチは、シーンに依存しないテキスト-モーション拡散モデルの事前学習から始まります。
トレーニングを容易にするため,シーン内に注釈付きナビゲーションと対話動作を組み込む。
論文 参考訳(メタデータ) (2024-04-16T16:04:38Z) - in2IN: Leveraging individual Information to Generate Human INteractions [29.495166514135295]
In2IN(in2IN)は、人間と人間の動作生成を個別に記述した新しい拡散モデルである。
In2INで生成された動きと、HumanML3Dで事前訓練された1人の動きによって生成された動きとを組み合わせたモデル合成手法であるDualMDMを提案する。
論文 参考訳(メタデータ) (2024-04-15T17:59:04Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
本稿では,2人のインタラクションシナリオにおいて,人の全身運動を合成する拡散モデルReMoSを提案する。
ペアダンス,忍術,キックボクシング,アクロバティックといった2人のシナリオでReMoSを実証する。
また,全身動作と指の動きを含む2人のインタラクションに対してReMoCapデータセットを寄贈した。
論文 参考訳(メタデータ) (2023-11-28T18:59:52Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
人間は高度に適応可能で、異なるタスク、状況、状況を扱うために異なるモードを素早く切り替える。
人間と物体の相互作用(HOI)において、これらのモードは、(1)活動全体に対する大規模な一貫した計画、(2)タイムラインに沿って開始・終了する小規模の子どもの対話的行動の2つのメカニズムに起因していると考えられる。
本研究は、人間の動作を協調的に制御する2つの同時メカニズムをモデル化することを提案する。
論文 参考訳(メタデータ) (2023-07-24T12:21:33Z) - InterGen: Diffusion-based Multi-human Motion Generation under Complex Interactions [49.097973114627344]
動作拡散プロセスに人間と人間の相互作用を組み込んだ効果的な拡散ベースアプローチであるInterGenを提案する。
我々はまず、InterHumanという名前のマルチモーダルデータセットをコントリビュートする。これは、様々な2人インタラクションのための約107Mフレームで構成され、正確な骨格運動と23,337の自然言語記述を持つ。
本稿では,世界規模での2人のパフォーマーのグローバルな関係を明示的に定式化した対話拡散モデルにおける動作入力の表現を提案する。
論文 参考訳(メタデータ) (2023-04-12T08:12:29Z) - A Probabilistic Model Of Interaction Dynamics for Dyadic Face-to-Face
Settings [1.9544213396776275]
我々は,対面設定における対の参加者間の相互作用のダイナミクスを捉える確率論的モデルを開発した。
この相互作用エンコーディングは、あるエージェントの将来のダイナミクスを予測する際に、生成に影響を与えるために使用される。
我々のモデルは, 相互作用する力学に基づいて, モード間のデライン化に成功していることを示す。
論文 参考訳(メタデータ) (2022-07-10T23:31:27Z) - Effective Actor-centric Human-object Interaction Detection [20.564689533862524]
画像中の人間と物体の相互作用を検出する新しいアクター中心のフレームワークを提案する。
提案手法は,挑戦的なV-COCOとHICO-DETベンチマークの最先端化を実現する。
論文 参考訳(メタデータ) (2022-02-24T10:24:44Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
ビデオに基づくヒューマンオブジェクトインタラクションシーンでは、人間とオブジェクトの時間的関係をモデル化することが、ビデオに提示されるコンテキスト情報を理解するための重要な手がかりである。
実効時間関係モデリングでは、各フレームの文脈情報を明らかにするだけでなく、時間間の依存関係を直接キャプチャすることもできる。
外観特徴、空間的位置、意味情報のフル活用は、ビデオベースのヒューマンオブジェクトインタラクション認識性能を改善する鍵でもある。
論文 参考訳(メタデータ) (2021-08-19T11:57:27Z) - Learning Modality Interaction for Temporal Sentence Localization and
Event Captioning in Videos [76.21297023629589]
そこで本稿では,ビデオの各対のモダリティの相補的情報をよりよく活用するために,ペアワイズなモダリティ相互作用を学習するための新しい手法を提案する。
提案手法は,4つの標準ベンチマークデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-28T12:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。