論文の概要: AI Algorithm for Predicting and Optimizing Trajectory of UAV Swarm
- arxiv url: http://arxiv.org/abs/2405.11722v1
- Date: Mon, 20 May 2024 01:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:33:17.421197
- Title: AI Algorithm for Predicting and Optimizing Trajectory of UAV Swarm
- Title(参考訳): UAV Swarmの軌道予測と最適化のためのAIアルゴリズム
- Authors: Amit Raj, Kapil Ahuja, Yann Busnel,
- Abstract要約: 本稿では,無人航空機(UAV)の艦隊生成における人工知能(AI)技術の適用について検討する。
2つの主な課題は、UAVの経路を正確に予測し、それらの衝突を効果的に回避することである。
スウェーデンとエリオットのアクティベーションを高度に融合した新しいアクティベーション関数AdaptoSwelliGaussを導入する。
- 参考スコア(独自算出の注目度): 4.025253632495535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the application of Artificial Intelligence (AI) techniques for generating the trajectories of fleets of Unmanned Aerial Vehicles (UAVs). The two main challenges addressed include accurately predicting the paths of UAVs and efficiently avoiding collisions between them. Firstly, the paper systematically applies a diverse set of activation functions to a Feedforward Neural Network (FFNN) with a single hidden layer, which enhances the accuracy of the predicted path compared to previous work. Secondly, we introduce a novel activation function, AdaptoSwelliGauss, which is a sophisticated fusion of Swish and Elliott activations, seamlessly integrated with a scaled and shifted Gaussian component. Swish facilitates smooth transitions, Elliott captures abrupt trajectory changes, and the scaled and shifted Gaussian enhances robustness against noise. This dynamic combination is specifically designed to excel in capturing the complexities of UAV trajectory prediction. This new activation function gives substantially better accuracy than all existing activation functions. Thirdly, we propose a novel Integrated Collision Detection, Avoidance, and Batching (ICDAB) strategy that merges two complementary UAV collision avoidance techniques: changing UAV trajectories and altering their starting times, also referred to as batching. This integration helps overcome the disadvantages of both - reduction in the number of trajectory manipulations, which avoids overly convoluted paths in the first technique, and smaller batch sizes, which reduce overall takeoff time in the second.
- Abstract(参考訳): 本稿では,無人航空機(UAV)の航路生成における人工知能(AI)技術の適用について検討する。
2つの主な課題は、UAVの経路を正確に予測し、それらの衝突を効果的に回避することである。
まず,1つの隠蔽層を持つフィードフォワードニューラルネットワーク(FFNN)に多様な活性化関数を体系的に適用し,予測経路の精度を従来よりも向上させる。
次に,スウェーデンとエリオットのアクティベーションを高度に融合した新しいアクティベーション関数AdaptoSwelliGaussを導入する。
スイッシュは滑らかな遷移を促進し、エリオットは突然の軌道変化を捉え、スケールとシフトしたガウスはノイズに対する堅牢性を高める。
このダイナミックな組み合わせは、UAV軌道予測の複雑さを捉えるために特別に設計されている。
この新たなアクティベーション関数は、既存のアクティベーション関数よりもかなり精度が高い。
第3に,UAVの衝突回避を両立させる新たな統合衝突検出・回避・バッチング(ICDAB)戦略を提案する。
この統合は、最初のテクニックで過度に複雑なパスを避けるトラジェクトリ操作の数を減らすことと、第2のテクニックで全体の離陸時間を短縮するバッチサイズを小さくするという、両方の欠点を克服するのに役立ちます。
関連論文リスト
- Learning Motion Blur Robust Vision Transformers with Dynamic Early Exit for Real-Time UAV Tracking [14.382072224997074]
トレーニング済みのViTバックボーンを使用したシングルストリームアーキテクチャでは、パフォーマンス、効率、堅牢性が改善されている。
リアルタイムなUAV追跡のためにTransformerブロックを動的に終了する適応型フレームワークにすることで、このフレームワークの効率を向上する。
また, 動きのぼかし処理におけるViTsの有効性も改善した。これは, UAV, 追跡対象の速さ, あるいはその両方によって生じるUAVトラッキングの共通問題である。
論文 参考訳(メタデータ) (2024-07-07T14:10:04Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - MADRL-based UAVs Trajectory Design with Anti-Collision Mechanism in
Vehicular Networks [1.9662978733004604]
今後6Gネットワークでは、無人航空機(UAV)が移動基地局として機能することが期待される。
最も困難な問題の1つは、複数のUAVのための軌道の設計であり、同じ領域に協調して機能する。
本稿では,これらの問題に対処するためのランクベースのバイナリマスキング手法を提案する。
論文 参考訳(メタデータ) (2024-01-21T20:08:32Z) - Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System [4.62588687215906]
本稿では,海流がもたらす複雑さと課題に対処する革新的なアプローチ(CBNNTAP)を提案する。
バイオインスパイアされたニューラルネットワーク(BINN)アプローチを取り入れ、個々のUUVの最も効率的なパスを予測する。
CBNNTAPアルゴリズムにおける重要な革新は、海流の破壊的な影響に対処する能力である。
論文 参考訳(メタデータ) (2024-01-10T19:38:25Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
本稿では,無人航空機(UAV)の新しい経路計画アルゴリズムを提案する。
まず,UAVの移動と安全操作の制約と経路長の要件を組み込んだ目的関数を定義する。
次に, 目的関数の定式化を最小化するために, Multi-subject TLBO というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-31T16:00:32Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot Object Detection (FSOD) は、未確認のタスクに少ないトレーニングサンプルで適応できるジェネリック検出器を学習することを目的としている。
計算量の増加を伴わない効率的なプレトレイン・トランスファー・フレームワーク(PTF)のベースラインを提案する。
また,予測された新しいウェイトと事前訓練されたベースウェイトとのベクトル長の不整合を軽減するために,適応長再スケーリング(ALR)戦略を提案する。
論文 参考訳(メタデータ) (2022-03-23T06:24:31Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
UAV障害物回避のための探索を改善するための2つの技術を紹介します。
ひとつは収束に基づくアプローチで、探索されていない動作と時間しきい値を反復して探索と搾取のバランスをとる。
2つ目は、ガウス混合分布を用いて予測された次の状態と比較し、次のアクションを選択するためのガイダンスベースアプローチである。
論文 参考訳(メタデータ) (2021-03-11T01:15:26Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
本稿では,一段検出器の検出パイプラインに対する一連の最適化手法を提案する。
効率的な歩行者検出のための単発アンカーベース検出器(SADet)を形成する。
構造的には単純だが、VGA解像度の画像に対して最先端の結果と20ドルFPSのリアルタイム速度を示す。
論文 参考訳(メタデータ) (2020-07-26T12:32:38Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。