論文の概要: Beyond MLE: Investigating SEARNN for Low-Resourced Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2405.11819v1
- Date: Mon, 20 May 2024 06:28:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 14:03:49.296404
- Title: Beyond MLE: Investigating SEARNN for Low-Resourced Neural Machine Translation
- Title(参考訳): Beyond MLE:低リソースニューラルネットワーク翻訳のためのSEARNNの調査
- Authors: Chris Emezue,
- Abstract要約: このプロジェクトは、低リソースのアフリカ言語のための機械翻訳を改善するSEARNNの可能性を探求した。
英語をイグボ語に、フランス語をエウス語に、フランス語をグマラ語に翻訳する実験が行われた。
我々は、SEARNNが、低リソース言語のための機械翻訳において、効果的にRNNを訓練するための有効なアルゴリズムであることを証明した。
- 参考スコア(独自算出の注目度): 0.09459165957946088
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Structured prediction tasks, like machine translation, involve learning functions that map structured inputs to structured outputs. Recurrent Neural Networks (RNNs) have historically been a popular choice for such tasks, including in natural language processing (NLP) applications. However, training RNNs using Maximum Likelihood Estimation (MLE) has its limitations, including exposure bias and a mismatch between training and testing metrics. SEARNN, based on the learning to search (L2S) framework, has been proposed as an alternative to MLE for RNN training. This project explored the potential of SEARNN to improve machine translation for low-resourced African languages -- a challenging task characterized by limited training data availability and the morphological complexity of the languages. Through experiments conducted on translation for English to Igbo, French to \ewe, and French to \ghomala directions, this project evaluated the efficacy of SEARNN over MLE in addressing the unique challenges posed by these languages. With an average BLEU score improvement of $5.4$\% over the MLE objective, we proved that SEARNN is indeed a viable algorithm to effectively train RNNs on machine translation for low-resourced languages.
- Abstract(参考訳): 機械翻訳のような構造化予測タスクには、構造化された入力を構造化された出力にマッピングする学習機能が含まれる。
リカレントニューラルネットワーク(Recurrent Neural Networks, RNN)は、自然言語処理(NLP)アプリケーションなど、歴史的にそのようなタスクに人気がある。
しかし、MLE(Maximum Likelihood Estimation)を使用したRNNのトレーニングには、露出バイアスやトレーニングとテストのメトリクスのミスマッチなど、制限がある。
SEARNNは、L2S(Learning to Search)フレームワークに基づいて、MLEに代わるRNNトレーニングとして提案されている。
このプロジェクトでは、低リソースのアフリカの言語に対する機械翻訳を改善するSEARNNの可能性について検討した。
英語のIgbo、フランス語のShaewe、フランス語のShaghomalaへの翻訳実験を通じて、このプロジェクトはこれらの言語がもたらす固有の課題に対処する上で、MLEに対するSEARNNの有効性を評価した。
MLE の目標に対して平均 BLEU スコアが 5.4$\% 改善されていることから,SEARNN は低リソース言語に対する機械翻訳において,RNN を効果的に訓練するためのアルゴリズムとして有効であることが証明された。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - What Languages are Easy to Language-Model? A Perspective from Learning Probabilistic Regular Languages [78.1866280652834]
大規模言語モデル (LM) は文字列上の分布である。
RNNとTransformer LMによる規則的LM(RLM)の学習性について検討する。
RNNとトランスフォーマーの双方において,RLMランクの複雑さは強く,学習可能性の有意な予測因子であることが判明した。
論文 参考訳(メタデータ) (2024-06-06T17:34:24Z) - Salute the Classic: Revisiting Challenges of Machine Translation in the
Age of Large Language Models [91.6543868677356]
ニューラルネットワーク翻訳の進化は、6つのコア課題の影響を受けている。
これらの課題には、ドメインミスマッチ、並列データの量、まれな単語予測、長文の翻訳、単語アライメントとしてのアテンションモデル、そして準最適ビームサーチが含まれる。
この研究はこれらの課題を再考し、先進的な大規模言語モデルにおけるそれらの継続的な関連性についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-16T13:30:09Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - POMP: Probability-driven Meta-graph Prompter for LLMs in Low-resource
Unsupervised Neural Machine Translation [32.76853731410492]
低リソース言語(LRL)は、限られた並列データによる教師ありニューラルマシン翻訳の課題に直面している。
本稿では,大言語モデルのLRL翻訳能力を高めるために,確率駆動型メタグラフプロンプタ(POMP)を提案する。
本実験は3つのLRLの翻訳品質を著しく改善した。
論文 参考訳(メタデータ) (2024-01-11T00:03:36Z) - Relevance-guided Neural Machine Translation [5.691028372215281]
ニューラルネットワーク翻訳(NMT)のための説明可能性に基づく学習手法を提案する。
その結果,低リソース環境下でのトレーニングにおいて,本手法が有望であることが示唆された。
論文 参考訳(メタデータ) (2023-11-30T21:52:02Z) - Advancing Regular Language Reasoning in Linear Recurrent Neural Networks [56.11830645258106]
本稿では,リニアリカレントニューラルネットワーク(LRNN)がトレーニングシーケンスに隠された規則を学習できるかを検討する。
ブロック対角および入力依存遷移行列を備えた新しいLRNNを提案する。
実験結果から,提案モデルが正規言語タスクに対して長さ外挿を行うことができる唯一のLRNNであることが示唆された。
論文 参考訳(メタデータ) (2023-09-14T03:36:01Z) - Semi-supervised Neural Machine Translation with Consistency
Regularization for Low-Resource Languages [3.475371300689165]
本稿では,高品質な文ペアを増補し,半教師付き方式でNMTモデルを訓練することにより,低リソース言語の問題に対処する,シンプルかつ効果的な手法を提案する。
具体的には、教師あり学習におけるクロスエントロピー損失と、疑似および拡張的対象文が与えられた教師なしのファッションにおけるKLディバージェンスを組み合わせる。
実験の結果,提案手法はNMTベースライン,特に0.46-2.03BLEUスコアを持つ低リソースデータセットにおいて,NMTベースラインを大幅に改善することが示された。
論文 参考訳(メタデータ) (2023-04-02T15:24:08Z) - Active Learning for Neural Machine Translation [0.0]
NMTツールキットのJoey NMTにActive Learningと呼ばれるテクニックを組み込んで、低リソース言語翻訳の十分な精度と堅牢な予測を行った。
この研究は、トランスフォーマーベースのNMTシステム、ベースラインモデル(BM)、フルトレーニングモデル(FTM)、アクティブラーニング最小信頼ベースモデル(ALLCM)、アクティブラーニングマージンサンプリングベースモデル(ALMSM)を用いて、英語をヒンディー語に翻訳する。
論文 参考訳(メタデータ) (2022-12-30T17:04:01Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
我々は、タスク固有のテキストデータの翻訳を最初に取得するために、中間ステップとしてNeural Machine Translationを使用します。
我々はNMTビームサーチグラフから単語混乱ネットワークを導出する手法を開発した。
NMT混在ネットワークは、n-gramと繰り返しニューラルネットワークLMの両方の難易度を低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-21T10:29:20Z) - Language Model Prior for Low-Resource Neural Machine Translation [85.55729693003829]
ニューラル翻訳モデル (TM) において, LM を事前に組み込む新しい手法を提案する。
正規化項を追加し、TMの出力分布をLMの下で予測可能とする。
2つの低リソース機械翻訳データセットの結果は、限られたモノリンガルデータであっても明らかな改善を示している。
論文 参考訳(メタデータ) (2020-04-30T16:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。