論文の概要: Active Learning for Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2301.00688v1
- Date: Fri, 30 Dec 2022 17:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 14:00:55.615539
- Title: Active Learning for Neural Machine Translation
- Title(参考訳): ニューラルネットワーク翻訳のためのアクティブラーニング
- Authors: Neeraj Vashistha, Kriti Singh, Ramakant Shakya
- Abstract要約: NMTツールキットのJoey NMTにActive Learningと呼ばれるテクニックを組み込んで、低リソース言語翻訳の十分な精度と堅牢な予測を行った。
この研究は、トランスフォーマーベースのNMTシステム、ベースラインモデル(BM)、フルトレーニングモデル(FTM)、アクティブラーニング最小信頼ベースモデル(ALLCM)、アクティブラーニングマージンサンプリングベースモデル(ALMSM)を用いて、英語をヒンディー語に翻訳する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machine translation mechanism translates texts automatically between
different natural languages, and Neural Machine Translation (NMT) has gained
attention for its rational context analysis and fluent translation accuracy.
However, processing low-resource languages that lack relevant training
attributes like supervised data is a current challenge for Natural Language
Processing (NLP). We incorporated a technique known Active Learning with the
NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of
low-resource language translation. With active learning, a semi-supervised
machine learning strategy, the training algorithm determines which unlabeled
data would be the most beneficial for obtaining labels using selected query
techniques. We implemented two model-driven acquisition functions for selecting
the samples to be validated. This work uses transformer-based NMT systems;
baseline model (BM), fully trained model (FTM) , active learning least
confidence based model (ALLCM), and active learning margin sampling based model
(ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy
(BLEU) metric has been used to evaluate system results. The BLEU scores of BM,
FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively.
The findings in this paper demonstrate that active learning techniques helps
the model to converge early and improve the overall quality of the translation
system.
- Abstract(参考訳): 機械翻訳機構は、異なる自然言語間で自動的にテキストを翻訳し、ニューラル機械翻訳(nmt)はその合理的な文脈分析と流れる翻訳精度で注目を集めている。
しかし、教師付きデータのような関連するトレーニング属性を持たない低リソース言語を処理することは、現在自然言語処理(NLP)の課題である。
NMTツールキットのJoey NMTにActive Learningと呼ばれるテクニックを組み込んで、低リソース言語翻訳の十分な精度と堅牢な予測を行った。
セミ教師付き機械学習戦略であるactive learningによって、トレーニングアルゴリズムは、選択したクエリ技術を使用してラベルを取得するのに最も有益なラベルなしデータを決定する。
検証対象のサンプルを選択するためのモデル駆動獲得関数を2つ実装した。
本研究は、トランスフォーマーベースのNMTシステム、ベースラインモデル(BM)、フルトレーニングモデル(FTM)、アクティブラーニング最小信頼モデル(ALLCM)、アクティブラーニングマージンサンプリングベースモデル(ALMSM)を用いて、英語をヒンディー語に翻訳する。
システム結果の評価にはblu(bilingual evaluation understudy)メトリックが用いられてきた。
BLEUのBM、FTM、ALLCM、ALMSMのスコアはそれぞれ16.26、22.56、24.54、24.20である。
本稿では,能動的学習手法がモデルの早期収束と翻訳システム全体の品質向上に寄与することを示す。
関連論文リスト
- Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu [53.437954702561065]
In-context machine translation (MT) with large language model (LLMs) は低リソースMTにおいて有望な手法である。
本研究では,各資源とその品質が満州語による翻訳性能に与える影響を体系的に検討した。
結果から,良質な辞書や優れた並列例は有用であり,文法はほとんど役に立たないことが明らかとなった。
論文 参考訳(メタデータ) (2025-02-17T14:53:49Z) - Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
本稿では,マルチモーダル機械翻訳システムの学習において,完全教師付きデータの必要性を回避する手法を提案する。
我々の手法はZeroMMTと呼ばれ、2つの目的の混合で学習することで、強いテキストのみの機械翻訳(MT)モデルを適応させることである。
本手法が完全に教師付きトレーニングデータを持たない言語に一般化されることを証明するため,CoMMuTE評価データセットをアラビア語,ロシア語,中国語の3言語に拡張した。
論文 参考訳(メタデータ) (2024-07-18T15:20:31Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Beyond MLE: Investigating SEARNN for Low-Resourced Neural Machine Translation [0.09459165957946088]
このプロジェクトは、低リソースのアフリカ言語のための機械翻訳を改善するSEARNNの可能性を探求した。
英語をイグボ語に、フランス語をエウス語に、フランス語をグマラ語に翻訳する実験が行われた。
我々は、SEARNNが、低リソース言語のための機械翻訳において、効果的にRNNを訓練するための有効なアルゴリズムであることを証明した。
論文 参考訳(メタデータ) (2024-05-20T06:28:43Z) - Statistical Machine Translation for Indic Languages [1.8899300124593648]
本稿では,バイリンガル統計機械翻訳モデルの開発について論じる。
このシステムを構築するために,MOSES オープンソース SMT ツールキットについて検討した。
本実験では, BLEU, METEOR, RIBESなどの標準指標を用いて, 翻訳の質を評価する。
論文 参考訳(メタデータ) (2023-01-02T06:23:12Z) - Confidence Based Bidirectional Global Context Aware Training Framework
for Neural Machine Translation [74.99653288574892]
我々は、ニューラルネットワーク翻訳(NMT)のための信頼に基づく双方向グローバルコンテキスト認識(CBBGCA)トレーニングフレームワークを提案する。
提案したCBBGCAトレーニングフレームワークは,3つの大規模翻訳データセットにおいて,NMTモデルを+1.02,+1.30,+0.57 BLEUスコアで大幅に改善する。
論文 参考訳(メタデータ) (2022-02-28T10:24:22Z) - Learning Domain Specific Language Models for Automatic Speech
Recognition through Machine Translation [0.0]
我々は、タスク固有のテキストデータの翻訳を最初に取得するために、中間ステップとしてNeural Machine Translationを使用します。
我々はNMTビームサーチグラフから単語混乱ネットワークを導出する手法を開発した。
NMT混在ネットワークは、n-gramと繰り返しニューラルネットワークLMの両方の難易度を低減するのに有効であることを示す。
論文 参考訳(メタデータ) (2021-09-21T10:29:20Z) - Self-supervised and Supervised Joint Training for Resource-rich Machine
Translation [30.502625878505732]
テキスト表現の自己教師付き事前学習が低リソースニューラルネットワーク翻訳(NMT)に成功している
我々は,NMTモデルを最適化するために,自己教師付き学習と教師付き学習を組み合わせた共同学習手法である$F$-XEnDecを提案する。
論文 参考訳(メタデータ) (2021-06-08T02:35:40Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASPは、汎用多言語ニューラルマシン翻訳モデルを事前訓練するためのアプローチである。
我々は,低,中,豊かな資源を含む多種多様な環境における42の翻訳方向の実験を行い,エキゾチックな言語対への変換を行った。
論文 参考訳(メタデータ) (2020-10-07T03:57:54Z) - Multi-task Learning for Multilingual Neural Machine Translation [32.81785430242313]
本稿では,bitextデータ上での翻訳タスクと,モノリンガルデータ上での2つの認知タスクを併用してモデルを学習するマルチタスク学習フレームワークを提案する。
提案手法は,高リソース言語と低リソース言語の両方の翻訳品質を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2020-10-06T06:54:12Z) - Language Model Prior for Low-Resource Neural Machine Translation [85.55729693003829]
ニューラル翻訳モデル (TM) において, LM を事前に組み込む新しい手法を提案する。
正規化項を追加し、TMの出力分布をLMの下で予測可能とする。
2つの低リソース機械翻訳データセットの結果は、限られたモノリンガルデータであっても明らかな改善を示している。
論文 参考訳(メタデータ) (2020-04-30T16:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。