論文の概要: Conditional Shift-Robust Conformal Prediction for Graph Neural Network
- arxiv url: http://arxiv.org/abs/2405.11968v1
- Date: Mon, 20 May 2024 11:47:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:14:56.765739
- Title: Conditional Shift-Robust Conformal Prediction for Graph Neural Network
- Title(参考訳): グラフニューラルネットワークの条件シフト・ロバスト整形予測
- Authors: S. Akansha,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNは堅牢な不確実性推定を提供する能力に制限がある。
本稿では,条件シフト中のGNN予測の不確実性に対処するために,共形予測を活用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data. Despite their efficacy, a significant drawback of GNNs lies in their limited ability to provide robust uncertainty estimates, posing challenges to their reliability in contexts where errors carry significant consequences. Moreover, GNNs typically excel in in-distribution settings, assuming that training and test data follow identical distributions: a condition often unmet in real-world graph data scenarios. In this article, we leverage conformal prediction, a widely recognized statistical technique for quantifying uncertainty by transforming predictive model outputs into prediction sets, to address uncertainty quantification in GNN predictions amidst conditional shift \footnote{Representing the change in conditional probability distribution $P(label |input)$ from source domain to target domain.} in graph-based semi-supervised learning (SSL). Additionally, we propose a novel loss function aimed at refining model predictions by minimizing conditional shift in latent stages. Termed Conditional Shift Robust (CondSR) conformal prediction for GNNs, our approach CondSR is model-agnostic and adaptable to various classification models. We validate the effectiveness of our method on standard graph benchmark datasets, integrating it with state-of-the-art GNNs in node classification tasks. The code implementation is publicly available for further exploration and experimentation.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの結果を予測する強力なツールとして登場した。
有効性にもかかわらず、GNNの重大な欠点は、堅牢な不確実性推定を提供する能力が限られていることであり、エラーが重大な結果をもたらす状況において、信頼性に課題が生じる。
さらに、GNNは一般的に、トレーニングデータとテストデータが同じ分布に従うと仮定して、分散環境では優れています。
本稿では、予測モデル出力を予測セットに変換することで不確実性を定量化するための、広く知られている統計手法であるコンフォメーション予測を活用し、条件シフト中のGNN予測における不確実性定量化に対処する。
グラフベースの半教師あり学習(SSL)。
さらに,潜在段階における条件シフトを最小限に抑えて,モデル予測の精細化を目的とした新たな損失関数を提案する。
条件シフトロバスト (CondSR) によるGNNの共形予測は, モデルに依存しない, 様々な分類モデルに適用可能なアプローチである。
提案手法の有効性を標準グラフベンチマークデータセットで検証し,ノード分類タスクにおける最先端のGNNと統合する。
コードの実装は、さらなる探索と実験のために公開されています。
関連論文リスト
- Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
オンラインGNN評価という新たな研究課題は、よく訓練されたGNNが現実世界の未ラベルグラフに一般化する能力について、貴重な洞察を提供することを目的としている。
我々は、よく訓練されたGNNモデルのテスト時間一般化誤差を推定するために、LeBeDと呼ばれる効果的な学習行動不一致スコアを開発する。
論文 参考訳(メタデータ) (2024-03-15T01:28:08Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Accurate and Scalable Estimation of Epistemic Uncertainty for Graph
Neural Networks [40.95782849532316]
固有GNNの不確実性推定を改善するための新しいトレーニングフレームワークを提案する。
我々のフレームワークは、新しいグラフアンカー戦略を通じて、データをグラフデータに中心付けるという原則に適応する。
本研究は,GNNの不確実性推定に関する知見を提供し,信頼度推定におけるG-$Delta$UQの有用性を実証する。
論文 参考訳(メタデータ) (2024-01-07T00:58:33Z) - Uncertainty Quantification over Graph with Conformalized Graph Neural
Networks [52.20904874696597]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに基づく強力な機械学習予測モデルである。
GNNには厳密な不確実性見積が欠如しており、エラーのコストが重要な設定での信頼性の高いデプロイメントが制限されている。
本稿では,共形予測(CP)をグラフベースモデルに拡張した共形GNN(CF-GNN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T21:38:23Z) - Distribution Free Prediction Sets for Node Classification [0.0]
我々は、共形予測の最近の進歩を活用し、帰納学習シナリオにおけるノード分類のための予測セットを構築する。
我々は、一般的なGNNモデルを用いた標準ベンチマークデータセットの実験を通して、共形予測の簡単な応用よりも、より厳密でより良い予測セットを提供することを示す。
論文 参考訳(メタデータ) (2022-11-26T12:54:45Z) - Stable Prediction on Graphs with Agnostic Distribution Shift [105.12836224149633]
グラフニューラルネットワーク(GNN)は、ランダムにトレーニングとテストデータを分離した様々なグラフタスクに有効であることが示されている。
しかし、実際のアプリケーションでは、トレーニンググラフの分布はテストグラフとは異なるかもしれない。
本稿では,グラフ上での局所的およびグローバル的に安定な学習と予測を可能にする,GNNのための新しい安定な予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-08T02:45:47Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。