論文の概要: Adaptive Extraction Network for Multivariate Long Sequence Time-Series Forecasting
- arxiv url: http://arxiv.org/abs/2405.12038v1
- Date: Mon, 20 May 2024 14:05:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 13:05:04.728284
- Title: Adaptive Extraction Network for Multivariate Long Sequence Time-Series Forecasting
- Title(参考訳): 多変量長周期時系列予測のための適応抽出ネットワーク
- Authors: Dandan Zhang, Yun Wang,
- Abstract要約: マルチレゾリューション畳み込み演算と変形可能な畳み込み演算を導入する。
ATVCNetは適応的時間変動畳み込みネットワークである。
実世界の8つのデータセットを対象としたATVCNetの性能評価を行った。
- 参考スコア(独自算出の注目度): 8.102472895996966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Models employing CNN architecture have made significant progress in multivariate long sequence time-series forecasting (MLSTF), particularly in modeling local time series characteristics. However, during the MLSTF process, extracting the global time series patterns and understanding the correlations among different variables are highly significant. To address this challenge, we introduce multi-resolution convolution and deformable convolution operations. By enlarging the receptive field using convolution kernels with different dilation factors to capture temporal correlation information across different resolutions, and adaptively adjusting the sampling positions through additional offset vectors, we enhance the network's ability to capture correlated features between variables. Building upon this, we propose ATVCNet, an adaptive temporal-variable convolutional network designed to effectively model the local/global temporal dependencies and inter-variable dependencies of multivariate time series. Specifically, extracting and fusing time series features at different resolutions, captures both local contextual information and global patterns in the time series. The designed inter-variable feature adaptive extraction module captures the correlation among different variables in the time series. We evaluated the performance of ATVCNet across eight real-world datasets. The results indicate that ATVCNet achieved a performance improvement of approximately 63.4% over state-of-the-art MLSTF models.
- Abstract(参考訳): CNNアーキテクチャを用いたモデルは、多変量長時系列時系列予測(MLSTF)において、特に局所時系列特性のモデル化において大きな進歩を遂げている。
しかし、MLSTFプロセスでは、グローバル時系列パターンを抽出し、異なる変数間の相関を理解することが非常に重要である。
この課題に対処するために、マルチレゾリューション畳み込みと変形可能な畳み込み演算を導入する。
異なる拡張因子を持つ畳み込みカーネルを用いて受容領域を拡大し、異なる解像度で時間的相関情報を捕捉し、追加のオフセットベクトルを介してサンプリング位置を適応的に調整することにより、変数間の相関特性を捕捉するネットワークの能力を高める。
そこで我々は,ATVCNetを提案する。ATVCNetは,多変量時系列の局所的・言語的時間的依存関係と変数間依存関係を効果的にモデル化するための適応的時変畳み込みネットワークである。
具体的には、時系列の特徴を異なる解像度で抽出し、融合させ、時系列における局所的な文脈情報とグローバルなパターンの両方をキャプチャする。
設計された可変特徴量適応抽出モジュールは、時系列内の異なる変数間の相関をキャプチャする。
実世界の8つのデータセットを対象としたATVCNetの性能評価を行った。
その結果、ATVCNetは最先端のMLSTFモデルに対して約63.4%の性能向上を達成したことが示唆された。
関連論文リスト
- Context Neural Networks: A Scalable Multivariate Model for Time Series Forecasting [5.5711773076846365]
実世界の時系列は、しばしば孤立して取得できない複雑な相互依存性を示す。
本稿では,時系列モデルに関連性のある文脈洞察を付加する,効率的な線形複雑化手法であるContext Neural Networkを紹介する。
論文 参考訳(メタデータ) (2024-05-12T00:21:57Z) - TSLANet: Rethinking Transformers for Time Series Representation Learning [19.795353886621715]
時系列データは、その固有の長短の依存関係によって特徴づけられる。
本稿では,時系列タスクの普遍的畳み込みモデルとして,新しい時系列軽量ネットワーク(TSLANet)を導入する。
我々の実験では、TSLANetは分類、予測、異常検出にまたがる様々なタスクにおいて最先端のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2024-04-12T13:41:29Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - FocusLearn: Fully-Interpretable, High-Performance Modular Neural Networks for Time Series [0.3277163122167434]
本稿では,構築によって解釈可能な時系列予測のための新しいモジュール型ニューラルネットワークモデルを提案する。
リカレントニューラルネットワークはデータ内の時間的依存関係を学習し、アテンションベースの特徴選択コンポーネントは最も関連性の高い特徴を選択する。
モジュール型のディープネットワークは、選択した機能から独立してトレーニングされ、ユーザーが機能がどのように結果に影響を与えるかを示し、モデルを解釈できる。
論文 参考訳(メタデータ) (2023-11-28T14:51:06Z) - Time-Parameterized Convolutional Neural Networks for Irregularly Sampled
Time Series [26.77596449192451]
不規則にサンプリングされた時系列は、いくつかのアプリケーション領域でユビキタスであり、スパースであり、完全に観測されていない、非整合的な観察に繋がる。
標準シーケンシャルニューラルネットワーク(RNN)と畳み込みニューラルネットワーク(CNN)は、観測時間間の定期的な間隔を考慮し、不規則な時系列モデリングに重大な課題を提起する。
時間的に不規則なカーネルを用いて畳み込み層をパラメータ化する。
論文 参考訳(メタデータ) (2023-08-06T21:10:30Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。