論文の概要: UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models
- arxiv url: http://arxiv.org/abs/2412.11803v1
- Date: Mon, 16 Dec 2024 14:14:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:58:28.838373
- Title: UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models
- Title(参考訳): UAlign: 大規模言語モデルにおける顔のアライメントに対する不確実性推定の活用
- Authors: Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang, Sheng Wang, Erxin Yu, Xuming Hu, Kam-Fai Wong,
- Abstract要約: 大きな言語モデル(LLM)は、しばしば、彼らが持っている事実の知識を正確に表現するのに苦労する。
知識境界を表現するために不確実性推定を利用するUAlignフレームワークを提案する。
提案したUAlign は LLM の能力を大幅に向上させ,既知の疑問に自信を持って答えることができることを示す。
- 参考スコア(独自算出の注目度): 41.67393607081513
- License:
- Abstract: Despite demonstrating impressive capabilities, Large Language Models (LLMs) still often struggle to accurately express the factual knowledge they possess, especially in cases where the LLMs' knowledge boundaries are ambiguous. To improve LLMs' factual expressions, we propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries, and then explicitly incorporates these representations as input features into prompts for LLMs to Align with factual knowledge. First, we prepare the dataset on knowledge question-answering (QA) samples by calculating two uncertainty estimations, including confidence score and semantic entropy, to represent the knowledge boundaries for LLMs. Subsequently, using the prepared dataset, we train a reward model that incorporates uncertainty estimations and then employ the Proximal Policy Optimization (PPO) algorithm for factuality alignment on LLMs. Experimental results indicate that, by integrating uncertainty representations in LLM alignment, the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions and refuse unknown questions on both in-domain and out-of-domain tasks, showing reliability improvements and good generalizability over various prompt- and training-based baselines.
- Abstract(参考訳): 印象的な能力にもかかわらず、LLM(Large Language Models)は、特にLLMの知識境界が曖昧である場合において、自身の持つ事実的知識を正確に表現するのに苦労することが多い。
LLMの事実表現を改善するために,知識境界を表現するために不確実性推定を利用するUAlignフレームワークを提案する。
まず,LLMの知識境界を表すために,信頼度スコアと意味エントロピーを含む2つの不確実性推定を算出し,知識質問応答(QA)サンプルのデータセットを作成する。
得られたデータセットを用いて、不確実性推定を組み込んだ報酬モデルをトレーニングし、その後、PPOアルゴリズムを用いてLCMの現実性アライメントを行う。
実験結果から,LLMアライメントにおける不確実性表現の統合により,提案したUAlignはLLMの能力を大幅に向上させ,既知の質問に自信を持って回答し,ドメイン内タスクとドメイン外タスクの両方について未知の質問を拒否し,様々なプロンプトおよびトレーニングベースラインに対する信頼性の向上と優れた一般化性を示す。
関連論文リスト
- Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal [21.342265570934995]
既存の手法はMLLMの信頼性を高める手段としての拒絶応答の重要性をほとんど見落としてきた。
InBoL(Information Boundary-Aware Learning Framework)は,MLLMが不十分な情報に遭遇する際のユーザクエリの応答を拒否する,新たなアプローチである。
このフレームワークでは、包括的なデータ生成パイプラインと、適切な拒絶応答を提供するモデルの能力を改善するためのトレーニング戦略が導入された。
論文 参考訳(メタデータ) (2024-12-15T14:17:14Z) - A Survey on Uncertainty Quantification of Large Language Models: Taxonomy, Open Research Challenges, and Future Directions [9.045698110081686]
大規模言語モデル (LLMs) は、信頼性を高く表現した、妥当で、事実的に正しくない応答を生成する。
従来の研究では、LLMが生み出す幻覚やその他の非現実的な反応は、関連するプロンプトに対するLLMの不確実性を調べることによって検出できることが示されている。
本調査は, LLMの健全な特徴と強度, 弱点を識別し, 既存の不確実性定量化手法を幅広く検討することを目的としている。
論文 参考訳(メタデータ) (2024-12-07T06:56:01Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
大規模言語モデル(LLM)は意思決定に広く使用されているが、特に医療などの重要なタスクにおける信頼性は十分に確立されていない。
本稿では,LSMが生成する応答の不確実性が,入力プロンプトで提供される情報とどのように関連しているかを検討する。
本稿では,LLMが応答を生成する方法を説明し,プロンプトと応答の不確実性の関係を理解するためのプロンプト応答の概念モデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T11:19:58Z) - PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations [22.011216436252845]
本稿では,大言語モデルの知識能力を探索するツールキットPertEvalを紹介する。
PertEvalは、静的ベンチマークからオンザフライテストサンプルを生成するために、人間のような再配置技術を採用している。
我々の発見は、より堅牢で真に理解できるLSMを前進させる洞察を与えてくれる。
論文 参考訳(メタデータ) (2024-05-30T06:38:32Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
大規模言語モデル(LLM)を評価するベンチマークであるCLAMBERを紹介する。
分類を基盤として12Kの高品質なデータを構築し, 市販のLCMの強度, 弱点, 潜在的なリスクを評価する。
本研究は, あいまいなユーザクエリの特定と明確化において, 現在のLCMの実用性に限界があることを示唆する。
論文 参考訳(メタデータ) (2024-05-20T14:34:01Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
大規模言語モデル(LLM)の画期的な能力として、文脈内学習が登場している。
両タイプの不確かさを定量化するための新しい定式化法とそれに対応する推定法を提案する。
提案手法は、プラグイン・アンド・プレイ方式でコンテキスト内学習の予測を理解するための教師なしの方法を提供する。
論文 参考訳(メタデータ) (2024-02-15T18:46:24Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
大規模言語モデル(LLM)は、適切な応答を生成するのに十分なパラメトリック知識が不足している状況において不確実性を表現する。
本研究の目的は,このような状況下でのLCMの行動の体系的調査であり,誠実さと役に立つことのトレードオフを強調することである。
論文 参考訳(メタデータ) (2023-11-16T10:02:40Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。