Multi-order Graph Clustering with Adaptive Node-level Weight Learning
- URL: http://arxiv.org/abs/2405.12183v1
- Date: Mon, 20 May 2024 17:09:58 GMT
- Title: Multi-order Graph Clustering with Adaptive Node-level Weight Learning
- Authors: Ye Liu, Xuelei Lin, Yejia Chen, Reynold Cheng,
- Abstract summary: We propose a multi-order graph clustering model (MOGC) to integrate multiple higher-order structures and edge connections at node level.
MOGC employs an adaptive weight learning mechanism to adjust the contributions of different motifs for each node.
Experiments on seven real-world datasets illustrate the effectiveness of MOGC.
- Score: 8.975255910740646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current graph clustering methods emphasize individual node and edge con nections, while ignoring higher-order organization at the level of motif. Re cently, higher-order graph clustering approaches have been designed by motif based hypergraphs. However, these approaches often suffer from hypergraph fragmentation issue seriously, which degrades the clustering performance greatly. Moreover, real-world graphs usually contain diverse motifs, with nodes participating in multiple motifs. A key challenge is how to achieve precise clustering results by integrating information from multiple motifs at the node level. In this paper, we propose a multi-order graph clustering model (MOGC) to integrate multiple higher-order structures and edge connections at node level. MOGC employs an adaptive weight learning mechanism to au tomatically adjust the contributions of different motifs for each node. This not only tackles hypergraph fragmentation issue but enhances clustering accuracy. MOGC is efficiently solved by an alternating minimization algo rithm. Experiments on seven real-world datasets illustrate the effectiveness of MOGC.
Related papers
- Hyperedge Modeling in Hypergraph Neural Networks by using Densest Overlapping Subgraphs [0.0]
One of the most important problems in graph clustering is to find densest overlapping subgraphs (DOS)
In this paper, we propose a solution to the DOS problem via Agglomerativedyion (DOSAGE) algorithm as a novel approach to enhance the process of generating the densest overlapping subgraphs.
Experiments on standard benchmarks show that the DOSAGE algorithm significantly outperforms the HGNNs and six other methods on the node classification task.
arXiv Detail & Related papers (2024-09-16T14:56:10Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Graph Sparsification via Mixture of Graphs [67.40204130771967]
We introduce Mixture-of-Graphs (MoG) to dynamically select tailored pruning solutions for each node.
MoG incorporates multiple sparsifier experts, each characterized by unique sparsity levels and pruning criteria, and selects the appropriate experts for each node.
Experiments on four large-scale OGB datasets and two superpixel datasets, equipped with five GNNs, demonstrate that MoG identifies subgraphs at higher sparsity levels.
arXiv Detail & Related papers (2024-05-23T07:40:21Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Dink-Net: Neural Clustering on Large Graphs [59.10189693120368]
A deep graph clustering method (Dink-Net) is proposed with the idea of dilation and shrink.
By discriminating nodes, whether being corrupted by augmentations, representations are learned in a self-supervised manner.
The clustering distribution is optimized by minimizing the proposed cluster dilation loss and cluster shrink loss.
Compared to the runner-up, Dink-Net 9.62% achieves NMI improvement on the ogbn-papers100M dataset with 111 million nodes and 1.6 billion edges.
arXiv Detail & Related papers (2023-05-28T15:33:24Z) - Deep Temporal Graph Clustering [77.02070768950145]
We propose a general framework for deep Temporal Graph Clustering (GC)
GC introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs.
Our framework can effectively improve the performance of existing temporal graph learning methods.
arXiv Detail & Related papers (2023-05-18T06:17:50Z) - MPool: Motif-Based Graph Pooling [0.0]
Graph Neural networks (GNNs) have recently become a powerful technique for many graph-related tasks including graph classification.
We propose a multi-channel Motif-based Graph Pooling method named (MPool)
As the first channel, we develop node selection-based graph pooling by designing a node ranking model considering the motif adjacency of nodes.
As the second channel, we develop cluster-based graph pooling by designing a spectral clustering model using motif adjacency.
As the final layer, the result of each channel is aggregated into the final graph representation.
arXiv Detail & Related papers (2023-03-07T05:21:15Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - ClusterFuG: Clustering Fully connected Graphs by Multicut [20.254912065749956]
In dense multicut, the clustering objective is given in a factorized form as inner products of node feature vectors.
We show how to rewrite classical greedy algorithms for multicut in our dense setting and how to modify them for greater efficiency and solution quality.
arXiv Detail & Related papers (2023-01-28T11:10:50Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.