論文の概要: Real-Time Go-Around Prediction: A case study of JFK airport
- arxiv url: http://arxiv.org/abs/2405.12244v1
- Date: Sat, 18 May 2024 07:39:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:43:12.949292
- Title: Real-Time Go-Around Prediction: A case study of JFK airport
- Title(参考訳): 実時間囲碁予測:JFK空港を事例として
- Authors: Ke Liu, Kaijing Ding, Lu Dai, Mark Hansen, Kennis Chan, John Schade,
- Abstract要約: 本稿では,長期記憶モデル(LSTM)を用いて,到着便がJFK空港に接近する際のリアルタイムの回避確率を予測する。
我々はまた,グローバルな視点と個々の飛行視点の両方から,周航現象の原因を調べる方法も開発している。
以上の結果から,車内間隔と滑走路同時運転が,全体の回避に寄与する主要な要因であると考えられた。
- 参考スコア(独自算出の注目度): 4.1374497211515
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we employ the long-short-term memory model (LSTM) to predict the real-time go-around probability as an arrival flight is approaching JFK airport and within 10 nm of the landing runway threshold. We further develop methods to examine the causes to go-around occurrences both from a global view and an individual flight perspective. According to our results, in-trail spacing, and simultaneous runway operation appear to be the top factors that contribute to overall go-around occurrences. We then integrate these pre-trained models and analyses with real-time data streaming, and finally develop a demo web-based user interface that integrates the different components designed previously into a real-time tool that can eventually be used by flight crews and other line personnel to identify situations in which there is a high risk of a go-around.
- Abstract(参考訳): 本稿では,JFK空港に近づき,滑走路しきい値の10nm以内に到達する時,リアルタイムの往復確率を予測するために,LSTM(Long-Short-Term-Memory Model)を用いる。
我々はまた,グローバルな視点と個々の飛行視点の両方から,周航現象の原因を調べる方法も開発している。
以上の結果から,車内間隔と滑走路同時運転が,全体の回避に寄与する主要な要因であると考えられた。
そして、これらの事前訓練されたモデルと分析をリアルタイムデータストリーミングと統合し、最終的に、以前デザインされた様々なコンポーネントをリアルタイムツールに統合したデモWebベースのユーザインターフェースを開発します。
関連論文リスト
- Deciphering Air Travel Disruptions: A Machine Learning Approach [0.0]
本研究は、出発時間、航空会社、空港などの要因を調べることにより、飛行遅延傾向を調査する。
遅延に対する様々なソースのコントリビューションを予測するために、回帰機械学習手法を採用している。
論文 参考訳(メタデータ) (2024-08-05T19:45:07Z) - Deep Reinforcement Learning for Real-Time Ground Delay Program Revision and Corresponding Flight Delay Assignments [24.09560293826079]
地上遅延プログラム(英語: Ground Delay Programs, GDP)は、航空交通管理(ATM)において、空港における容量の調整と不一致の要求に使用される一般的な交通管理イニシアチブである。
動作クローン(BC)と保守的Qラーニング(CQL)という2つのRLモデルを開発した。
これらのモデルは、地上および空中遅延と終端領域の混雑を統合した洗練された報酬関数を利用することで、GDP効率を向上させるように設計されている。
論文 参考訳(メタデータ) (2024-05-14T03:48:45Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
本稿では,レーダ監視データから収集したプロシージャデータとフライトトラックから可変性を学習可能な確率モデルを提案する。
任意の航空機数を含む交通量を生成するために,ペアワイズモデルを用いる方法を示す。
論文 参考訳(メタデータ) (2023-03-17T13:58:06Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Decision Support Models for Predicting and Explaining Airport Passenger
Connectivity from Data [4.613211668370363]
本稿では,接続飛行管理の異なる段階を対象とした機械学習に基づく意思決定支援モデルを提案する。
フライトや乗客の履歴データを用いて、航空会社のハブ空港におけるフライト接続の欠落を予測した。
論文 参考訳(メタデータ) (2021-11-02T22:08:39Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。