論文の概要: Synthetic Aircraft Trajectory Generation Using Time-Based VQ-VAE
- arxiv url: http://arxiv.org/abs/2504.09101v1
- Date: Sat, 12 Apr 2025 06:46:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 16:54:31.336045
- Title: Synthetic Aircraft Trajectory Generation Using Time-Based VQ-VAE
- Title(参考訳): 時間に基づくVQ-VAEを用いた合成航空機軌道生成
- Authors: Abdulmajid Murad, Massimiliano Ruocco,
- Abstract要約: 時間に基づくベクトル量子変分オートエンコーダ(TimeVQVAE)を適用したトラジェクトリ合成の新しい手法を提案する。
提案手法を応用したTimeVQVAEの評価には,品質,統計,分布測定,およびオープンソースの航空交通シミュレータを用いたフライアセスメントを応用した。
その結果、TimeVQVAEは時間的畳み込みVAalEベースラインよりも優れており、精度、時間的一貫性、統計特性の点で実際の飛行データを反映する合成軌道を生成することが示唆された。
- 参考スコア(独自算出の注目度): 0.18416014644193066
- License:
- Abstract: In modern air traffic management, generating synthetic flight trajectories has emerged as a promising solution for addressing data scarcity, protecting sensitive information, and supporting large-scale analyses. In this paper, we propose a novel method for trajectory synthesis by adapting the Time-Based Vector Quantized Variational Autoencoder (TimeVQVAE). Our approach leverages time-frequency domain processing, vector quantization, and transformer-based priors to capture both global and local dynamics in flight data. By discretizing the latent space and integrating transformer priors, the model learns long-range spatiotemporal dependencies and preserves coherence across entire flight paths. We evaluate the adapted TimeVQVAE using an extensive suite of quality, statistical, and distributional metrics, as well as a flyability assessment conducted in an open-source air traffic simulator. Results indicate that TimeVQVAE outperforms a temporal convolutional VAE baseline, generating synthetic trajectories that mirror real flight data in terms of spatial accuracy, temporal consistency, and statistical properties. Furthermore, the simulator-based assessment shows that most generated trajectories maintain operational feasibility, although occasional outliers underscore the potential need for additional domain-specific constraints. Overall, our findings underscore the importance of multi-scale representation learning for capturing complex flight behaviors and demonstrate the promise of TimeVQVAE in producing representative synthetic trajectories for downstream tasks such as model training, airspace design, and air traffic forecasting.
- Abstract(参考訳): 現代の航空交通管理において、データ不足に対処し、機密情報を保護し、大規模分析を支援するための有望なソリューションとして、合成飛行軌道の生成が出現している。
本稿では,Time-Based Vector Quantized Variational Autoencoder (TimeVQVAE) を適用したトラジェクトリ合成手法を提案する。
提案手法は, 時間周波数領域処理, ベクトル量子化, トランスフォーマーに基づく先行処理を利用して, 飛行データにおける大域的および局所的ダイナミクスを捉える。
潜時空間の離散化とトランスフォーマーの事前の統合により、このモデルは長距離時空間依存を学習し、飛行経路全体のコヒーレンスを維持する。
提案手法を応用したTimeVQVAEの評価には,品質,統計,分布測定,およびオープンソースの航空交通シミュレータを用いたフライアセスメントを応用した。
その結果,TimeVQVAEは時間的畳み込みVAEベースラインよりも優れており,空間的精度,時間的一貫性,統計的特性の点で実飛行データを反映する合成軌道を生成することが示唆された。
さらに、シミュレーターに基づく評価では、ほとんどの生成された軌道は、時折、追加のドメイン固有の制約の必要性を浮き彫りにするが、運用可能性を維持することが示される。
本研究は, 複雑な飛行行動を把握するためのマルチスケール表現学習の重要性と, モデルトレーニング, 空域設計, 航空交通予報などの下流作業のための代表的な合成軌道生成におけるTimeVQVAEの可能性を実証するものである。
関連論文リスト
- Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
ドローンが捉えたデータは、大規模都市ネットワークのための正確なマルチセンサー移動観測所を作ることができる。
単純なグラフベースモデルHiMSNetは、複数のデータモダリティと学習時間相関を統合するために提案されている。
論文 参考訳(メタデータ) (2025-01-07T03:23:28Z) - SONNET: Enhancing Time Delay Estimation by Leveraging Simulated Audio [17.811771707446926]
学習に基づく手法は、合成データにもとづいても、新しい実世界のデータに基づいてGCC-PHATを著しく上回り得ることを示す。
トレーニングされたモデルであるSONNETは、リアルタイムに実行可能で、多くの実データアプリケーションのために、最初から新しいデータに取り組んでいます。
論文 参考訳(メタデータ) (2024-11-20T10:23:21Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
本稿では,ハイブリッドトランスフォーマーと自己教師型学習を組み合わせたモデルを提案する。
このモデルは、トラフィックのシーケンスレベルにデータ拡張技術を適用することにより、適応的なデータ拡張を強化する。
本研究では,時間的および空間的依存をモデル化する2つの自己教師型学習タスクを設計し,モデルの精度と能力を向上させる。
論文 参考訳(メタデータ) (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - TrTr: A Versatile Pre-Trained Large Traffic Model based on Transformer
for Capturing Trajectory Diversity in Vehicle Population [13.75828180340772]
本研究では,トランスフォーマーアーキテクチャを交通タスクに適用し,車内における軌道の多様性を学習することを目的とした。
我々は、注意機構に合わせてデータ構造を作成し、繰り返しの時間的要求に対応する一連のノイズを導入する。
設計した事前学習モデルは,車両の空間分布を捉える上で優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-22T07:36:22Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Enhancing the Robustness via Adversarial Learning and Joint
Spatial-Temporal Embeddings in Traffic Forecasting [11.680589359294972]
本稿では,ダイナミックスとロバストネスのバランスをとることの課題に対処するため,TrendGCNを提案する。
我々のモデルは、空間的(ノード的に)埋め込みと時間的(時間的に)埋め込みを同時に組み込んで、不均一な空間的・時間的畳み込みを考慮に入れている。
ステップワイドな予測エラーを独立して扱う従来のアプローチと比較して、我々のアプローチはより現実的で堅牢な予測を生み出すことができる。
論文 参考訳(メタデータ) (2022-08-05T09:36:55Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - Spatio-Temporal Data Mining for Aviation Delay Prediction [15.621546618044173]
本研究では,商業飛行における長期記憶ネットワーク(LSTM)に基づく航空機遅延予測システムを提案する。
このシステムは、自動監視放送(ADS-B)メッセージから歴史的軌跡から学習する。
従来と比べ,大規模なハブ空港ではより堅牢で正確であることが実証された。
論文 参考訳(メタデータ) (2021-03-20T18:37:06Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
空気質は人間の健康に大きく影響し、空気質指数(AQI)の正確かつタイムリーな予測がますます重要になっている。
本稿では, 精密な3次元空気質モニタリングと予測を行うための, 新たなフェデレーション学習型地上空気質検知フレームワークを提案する。
地中センシングシステムでは, グラフ畳み込みニューラルネットワークを用いたLong Short-Term Memory (GC-LSTM) モデルを提案し, 高精度, リアルタイム, 将来的なAQI推論を実現する。
論文 参考訳(メタデータ) (2020-07-23T13:32:47Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。