Cascade-based Randomization for Inferring Causal Effects under Diffusion Interference
- URL: http://arxiv.org/abs/2405.12340v1
- Date: Mon, 20 May 2024 19:24:10 GMT
- Title: Cascade-based Randomization for Inferring Causal Effects under Diffusion Interference
- Authors: Zahra Fatemi, Jean Pouget-Abadie, Elena Zheleva,
- Abstract summary: Cluster-based randomization approaches perform poorly when interference propagates in cascades.
We propose a cascade-based network experiment design that initiates treatment assignment from the cascade seed node and propagates the assignment to their multi-hop neighbors.
- Score: 15.7485894481935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The presence of interference, where the outcome of an individual may depend on the treatment assignment and behavior of neighboring nodes, can lead to biased causal effect estimation. Current approaches to network experiment design focus on limiting interference through cluster-based randomization, in which clusters are identified using graph clustering, and cluster randomization dictates the node assignment to treatment and control. However, cluster-based randomization approaches perform poorly when interference propagates in cascades, whereby the response of individuals to treatment propagates to their multi-hop neighbors. When we have knowledge of the cascade seed nodes, we can leverage this interference structure to mitigate the resulting causal effect estimation bias. With this goal, we propose a cascade-based network experiment design that initiates treatment assignment from the cascade seed node and propagates the assignment to their multi-hop neighbors to limit interference during cascade growth and thereby reduce the overall causal effect estimation error. Our extensive experiments on real-world and synthetic datasets demonstrate that our proposed framework outperforms the existing state-of-the-art approaches in estimating causal effects in network data.
Related papers
- Linear Contextual Bandits with Interference [14.835167982538053]
We introduce a systematic framework to address interference in Linear CB (LinCB)
We propose a series of algorithms that explicitly quantify the interference effect in the reward modeling process.
The effectiveness of our approach is demonstrated through simulations and a synthetic data generated based on MovieLens data.
arXiv Detail & Related papers (2024-09-24T02:51:00Z) - Causal Message Passing for Experiments with Unknown and General Network Interference [5.294604210205507]
We introduce a new framework to accommodate complex and unknown network interference.
Our framework, termed causal message-passing, is grounded in high-dimensional approximate message passing methodology.
We demonstrate the effectiveness of this approach across five numerical scenarios.
arXiv Detail & Related papers (2023-11-14T17:31:50Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Partial Identification with Noisy Covariates: A Robust Optimization
Approach [94.10051154390237]
Causal inference from observational datasets often relies on measuring and adjusting for covariates.
We show that this robust optimization approach can extend a wide range of causal adjustment methods to perform partial identification.
Across synthetic and real datasets, we find that this approach provides ATE bounds with a higher coverage probability than existing methods.
arXiv Detail & Related papers (2022-02-22T04:24:26Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Minimizing Interference and Selection Bias in Network Experiment Design [14.696233190562939]
We propose a principled framework for network experiment design which jointly minimizes interference and selection bias.
Our experiments on a number of real-world datasets show that our proposed framework leads to significantly lower error in causal effect estimation.
arXiv Detail & Related papers (2020-04-15T17:34:13Z) - Causal Inference under Networked Interference and Intervention Policy
Enhancement [35.149125599812706]
Estimating individual treatment effects from data of randomized experiments is a critical task in causal inference.
Usually, in randomized experiments or observational studies with interconnected units, one can only observe treatment responses under interference.
We study causal effect estimation under general network interference using GNNs, which are powerful tools for capturing the dependency in the graph.
arXiv Detail & Related papers (2020-02-20T00:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.