論文の概要: Self-HWDebug: Automation of LLM Self-Instructing for Hardware Security Verification
- arxiv url: http://arxiv.org/abs/2405.12347v1
- Date: Mon, 20 May 2024 19:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:57:39.911100
- Title: Self-HWDebug: Automation of LLM Self-Instructing for Hardware Security Verification
- Title(参考訳): Self-HWDebug: ハードウェアセキュリティ検証のためのLLMセルフインストラクションの自動化
- Authors: Mohammad Akyash, Hadi Mardani Kamali,
- Abstract要約: Self-HWデバッガは、LLM(Large Language Models)を活用して必要な命令を生成する革新的なフレームワークである。
Self-HWデバッガは、モデル独自の出力を使用してデバッグをガイドすることによって、人間の介入を大幅に削減する。
包括的なテストを通じて、Self-HWデバッガは専門家の労力/時間を短縮するだけでなく、デバッグプロセスの品質を向上させることも証明している。
- 参考スコア(独自算出の注目度): 0.4642370358223669
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of instruction-tuned Large Language Models (LLMs) marks a significant advancement in artificial intelligence (AI) (tailored to respond to specific prompts). Despite their popularity, applying such models to debug security vulnerabilities in hardware designs, i.e., register transfer language (RTL) modules, particularly at system-on-chip (SoC) level, presents considerable challenges. One of the main issues lies in the need for precisely designed instructions for pinpointing and mitigating the vulnerabilities, which requires substantial time and expertise from human experts. In response to this challenge, this paper proposes Self-HWDebug, an innovative framework that leverages LLMs to automatically create required debugging instructions. In Self-HWDebug, a set of already identified bugs from the most critical hardware common weakness enumeration (CWE) listings, along with mitigation resolutions, is provided to the framework, followed by prompting the LLMs to generate targeted instructions for such mitigation. The LLM-generated instructions are subsequently used as references to address vulnerabilities within the same CWE category but in totally different designs, effectively demonstrating the framework's ability to extend solutions across related security issues. Self-HWDebug significantly reduces human intervention by using the model's own output to guide debugging. Through comprehensive testing, Self-HWDebug proves not only to reduce experts' effort/time but also to even improve the quality of the debugging process.
- Abstract(参考訳): 命令調整型大規模言語モデル(LLM)の台頭は、人工知能(AI)(特定のプロンプトに対応するのに適したもの)の大幅な進歩を示している。
その人気にもかかわらず、ハードウェア設計におけるセキュリティ脆弱性、すなわちレジスタ転送言語(RTL)モジュール、特にSystem-on-chip(SoC)レベルでのセキュリティ脆弱性のデバッグにそのようなモデルを適用することは、大きな課題を呈している。
主な課題の1つは、脆弱性の特定と緩和のために、正確に設計された指示が必要であることである。
この課題に対応するために,LLMを活用して必要なデバッグ手順を自動生成する,革新的なフレームワークであるSelf-HWDebugを提案する。
Self-HWDebugでは、最も重要なハードウェア共通弱点列挙(CWE)リストから既に特定されているバグのセットと緩和解像度がフレームワークに提供され、その後、LSMにそのような緩和のためのターゲット命令を生成するよう促す。
LLMの生成した命令はその後、同じCWEカテゴリ内の脆弱性に対処する参照として使用されるが、全く異なる設計で、関連するセキュリティ問題にまたがるソリューションを拡張するフレームワークの能力を効果的に示している。
Self-HWDebugは、モデル独自の出力を使用してデバッグをガイドすることによって、人間の介入を大幅に削減する。
包括的なテストを通じて、Self-HWDebugは専門家の労力/時間を短縮するだけでなく、デバッグプロセスの品質を向上させることも証明している。
関連論文リスト
- Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Large Language Models and Code Security: A Systematic Literature Review [0.0]
大規模言語モデル(LLM)は、様々なプログラミングタスクを自動化する強力なツールとして登場した。
LLMはプログラマが知らない脆弱性を導入する可能性がある。
コードを解析する際には、明確な脆弱性を見逃したり、存在しない脆弱性を通知する可能性がある。
論文 参考訳(メタデータ) (2024-12-19T16:20:22Z) - Look Before You Leap: Enhancing Attention and Vigilance Regarding Harmful Content with GuidelineLLM [53.79753074854936]
大規模言語モデル(LLM)は、出現するジェイルブレイク攻撃に対してますます脆弱である。
この脆弱性は現実世界のアプリケーションに重大なリスクをもたらす。
本稿では,ガイドラインLLMという新しい防御パラダイムを提案する。
論文 参考訳(メタデータ) (2024-12-10T12:42:33Z) - SoK: Prompt Hacking of Large Language Models [5.056128048855064]
大規模言語モデル(LLM)ベースのアプリケーションの安全性と堅牢性は、人工知能において重要な課題である。
私たちは、ジェイルブレイク、リーク、インジェクションという3つの異なるタイプのプロンプトハッキングについて、包括的で体系的な概要を提供しています。
LLM応答を5つの異なるクラスに分類する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-16T01:30:41Z) - VulnLLMEval: A Framework for Evaluating Large Language Models in Software Vulnerability Detection and Patching [0.9208007322096533]
大きな言語モデル(LLM)は、コード翻訳のようなタスクにおいて有望であることを示している。
本稿では,C コードの脆弱性を特定し,パッチする際の LLM の性能を評価するためのフレームワーク VulnLLMEval を紹介する。
私たちの研究には、Linuxカーネルから抽出された307の現実世界の脆弱性が含まれている。
論文 参考訳(メタデータ) (2024-09-16T22:00:20Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - DLAP: A Deep Learning Augmented Large Language Model Prompting Framework for Software Vulnerability Detection [12.686480870065827]
本稿では,ディープラーニング(DL)モデルとLLM(Large Language Models)モデルの両方を最大限に組み合わせて,例外的な脆弱性検出性能を実現するフレームワークである textbfDLAP について述べる。
実験の結果、DLAPは、ロールベースのプロンプト、補助情報プロンプト、チェーン・オブ・シントプロンプト、コンテキスト内学習プロンプトなど、最先端のプロンプトフレームワークより優れていることが確認された。
論文 参考訳(メタデータ) (2024-05-02T11:44:52Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
LLM(Large Language Models)は、命令追従に非常に熟練した言語である。
この能力は、迅速なインジェクション攻撃のリスクをもたらす。
このような攻撃に対する命令追従LDMの堅牢性を評価する。
論文 参考訳(メタデータ) (2023-08-17T06:21:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。