論文の概要: Understanding Defects in Generated Codes by Language Models
- arxiv url: http://arxiv.org/abs/2408.13372v1
- Date: Fri, 23 Aug 2024 21:10:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:49:09.577389
- Title: Understanding Defects in Generated Codes by Language Models
- Title(参考訳): 言語モデルによる生成コード中の欠陥の理解
- Authors: Ali Mohammadi Esfahani, Nafiseh Kahani, Samuel A. Ajila,
- Abstract要約: 本研究では,大規模言語モデルによって生成されたコードスニペットの367の欠陥を分類,解析する。
エラーカテゴリは、LLMが頻繁に失敗する重要な領域を示し、目標とする改善の必要性を強調している。
本稿では,スクラッチパッド・プロンプト・プログラム・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・チェーン・オブ・ソート・プロンプト・ストラクテッド・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・オブ・ソート・プロンプト・プログラム・オブ・ソート・プロンプト・プログラム・オブ・オブ・ソート・プロンプト・プロンプト・アンド・ストラクテッド・オブ・フォーンティング(Structued Chain-of-Thought Prompting)の5つの迅速な技術技術
- 参考スコア(独自算出の注目度): 0.669087470775851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the reliability of code generation by Large Language Models (LLMs), focusing on identifying and analyzing defects in the generated code. Despite the advanced capabilities of LLMs in automating code generation, ensuring the accuracy and functionality of the output remains a significant challenge. By using a structured defect classification method to understand their nature and origins this study categorizes and analyzes 367 identified defects from code snippets generated by LLMs, with a significant proportion being functionality and algorithm errors. These error categories indicate key areas where LLMs frequently fail, underscoring the need for targeted improvements. To enhance the accuracy of code generation, this paper implemented five prompt engineering techniques, including Scratchpad Prompting, Program of Thoughts Prompting, Chain-of-Thought Prompting, Chain of Code Prompting, and Structured Chain-of-Thought Prompting. These techniques were applied to refine the input prompts, aiming to reduce ambiguities and improve the models' accuracy rate. The research findings suggest that precise and structured prompting significantly mitigates common defects, thereby increasing the reliability of LLM-generated code.
- Abstract(参考訳): 本研究では,Large Language Models (LLMs) によるコード生成の信頼性について検討し,生成したコードの欠陥を特定し解析することに焦点を当てた。
コード生成の自動化におけるLLMの高度な機能にもかかわらず、出力の正確性と機能を保証することは大きな課題である。
構造的欠陥分類法を用いて、LLMが生成したコードスニペットの欠陥を367個分類し、解析する。
これらのエラーカテゴリは、LLMが頻繁に失敗する重要な領域を示し、目標とする改善の必要性を強調している。
コード生成の精度を高めるため,Scratchpad Prompting,Program of Thoughts Prompting,Chain-of-Thought Prompting,Chain of Code Prompting,Structured Chain-of-Thought Promptingの5つの手法を実装した。
これらの手法は入力のプロンプトを洗練させ、曖昧さを減らし、モデルの精度を向上させることを目的としている。
研究結果から, 高精度かつ構造化により共通欠陥が著しく軽減され, LLM生成コードの信頼性が向上することが示唆された。
関連論文リスト
- A Deep Dive Into Large Language Model Code Generation Mistakes: What and Why? [9.246899995643918]
大規模な言語モデルは、仕様から逸脱する欠陥コードを生成することができる。
広範囲な手動分析により, ノンシンタクティックな誤りの7つのカテゴリーが同定された。
評価の結果,LPMの誤りの原因を特定すると,ReActプロンプト技術を用いたGPT-4が最大0.65のF1スコアを達成できることがわかった。
論文 参考訳(メタデータ) (2024-11-03T02:47:03Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
大規模言語モデル(LLM)は、ソフトウェア開発ライフサイクルにますます統合されています。
本稿では,これらの課題に対処するため,メタモルフィック・プロンプト・テストと呼ばれる新しい手法を提案する。
我々のHumanEvalに対する評価は,GPT-4が生成する誤プログラムの75%を,偽陽性率8.6%で検出できることを示す。
論文 参考訳(メタデータ) (2024-06-11T00:40:17Z) - Chain of Targeted Verification Questions to Improve the Reliability of Code Generated by LLMs [10.510325069289324]
LLMが生成するコードの信頼性向上を目的とした自己補充手法を提案する。
当社のアプローチは,初期コード内の潜在的なバグを特定するために,対象とする検証質問(VQ)に基づいています。
本手法は,LLMをターゲットとするVQと初期コードで再プロンプトすることで,潜在的なバグの修復を試みる。
論文 参考訳(メタデータ) (2024-05-22T19:02:50Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
コントラストデコーディングは,様々な推論タスクにおいて,グリージーデコーディングよりもアウト・オブ・ボックスの大幅な改善を実現することを示す。
本稿では,LLaMA-65BがHellaSwag Commonsense reasoning benchmark上でLLaMA 2, GPT-3.5, PaLM 2-Lより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-17T00:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。