論文の概要: Paired Conditional Generative Adversarial Network for Highly Accelerated Liver 4D MRI
- arxiv url: http://arxiv.org/abs/2405.12357v1
- Date: Mon, 20 May 2024 20:14:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:57:39.898471
- Title: Paired Conditional Generative Adversarial Network for Highly Accelerated Liver 4D MRI
- Title(参考訳): 高加速度肝4次元MRIのための条件付き生成逆相関ネットワーク
- Authors: Di Xu, Xin Miao, Hengjie Liu, Jessica E. Scholey, Wensha Yang, Mary Feng, Michael Ohliger, Hui Lin, Yi Lao, Yang Yang, Ke Sheng,
- Abstract要約: 本研究では,4次元MRI再構成時間を短縮するReconstruct Paired Generative Adrial Network (Re-Con-GAN)を提案する。
ResNet9, UNet, Restructation Swin Transformerの3種類のネットワークがジェネレータとして探索された。
Re-Con-GANはCS/UNetモデルと比較してPSNR、SSIM、RMSEのスコアを一貫して達成した。
- 参考スコア(独自算出の注目度): 8.880834588879525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: 4D MRI with high spatiotemporal resolution is desired for image-guided liver radiotherapy. Acquiring densely sampling k-space data is time-consuming. Accelerated acquisition with sparse samples is desirable but often causes degraded image quality or long reconstruction time. We propose the Reconstruct Paired Conditional Generative Adversarial Network (Re-Con-GAN) to shorten the 4D MRI reconstruction time while maintaining the reconstruction quality. Methods: Patients who underwent free-breathing liver 4D MRI were included in the study. Fully- and retrospectively under-sampled data at 3, 6 and 10 times (3x, 6x and 10x) were first reconstructed using the nuFFT algorithm. Re-Con-GAN then trained input and output in pairs. Three types of networks, ResNet9, UNet and reconstruction swin transformer, were explored as generators. PatchGAN was selected as the discriminator. Re-Con-GAN processed the data (3D+t) as temporal slices (2D+t). A total of 48 patients with 12332 temporal slices were split into training (37 patients with 10721 slices) and test (11 patients with 1611 slices). Results: Re-Con-GAN consistently achieved comparable/better PSNR, SSIM, and RMSE scores compared to CS/UNet models. The inference time of Re-Con-GAN, UNet and CS are 0.15s, 0.16s, and 120s. The GTV detection task showed that Re-Con-GAN and CS, compared to UNet, better improved the dice score (3x Re-Con-GAN 80.98%; 3x CS 80.74%; 3x UNet 79.88%) of unprocessed under-sampled images (3x 69.61%). Conclusion: A generative network with adversarial training is proposed with promising and efficient reconstruction results demonstrated on an in-house dataset. The rapid and qualitative reconstruction of 4D liver MR has the potential to facilitate online adaptive MR-guided radiotherapy for liver cancer.
- Abstract(参考訳): 目的:高時空間分解能の4D MRIが肝放射線治療において望まれる。
密集したk空間データを取得するのに時間がかかります。
スパースサンプルによる高速な取得が望ましいが、画像の品質低下や長い復元時間の原因となることが多い。
本研究では, 再構成品質を維持しつつ, 4次元MRI再構成時間の短縮を図るために, 再構成ペア付き条件生成適応ネットワーク(Re-Con-GAN)を提案する。
方法: 自由呼吸肝4D MRIを施行した患者を対象とした。
nuFFTアルゴリズムを用いて3, 6, 10倍 (3x, 6x, 10x) の完全および振り返りアンダーサンプリングデータを初めて再構成した。
その後、Re-Con-GANはペアで入力と出力を訓練した。
ResNet9, UNet, Restructation Swin Transformerの3種類のネットワークがジェネレータとして探索された。
PatchGANが差別者に選ばれた。
Re-Con-GANはデータを時間スライス(2D+t)として処理した。
時間スライス12332例のうち48例はトレーニング(37例は10721スライス)とテスト(11例は1611スライス)に分けられた。
結果: Re-Con-GAN は CS/UNet モデルと比較し,PSNR,SSIM,RMSE のスコアを一貫して達成した。
Re-Con-GAN、UNet、CSの推論時間は0.15s、0.16s、120sである。
GTV検出タスクでは、UNetと比較してRe-Con-GANとCSは、未処理のアンダーサンプル画像(3x 69.61%)のダイススコア(3x Re-Con-GAN 80.98%、3x CS 80.74%、3x UNet 79.88%)を改善した。
結論: 家庭内データセットに有望かつ効率的な再構成結果を提示し, 対人訓練を施した生成ネットワークを提案する。
4D肝MRの迅速かつ質的な再構成は、肝癌に対するオンライン適応型MR誘導放射線療法を促進する可能性がある。
関連論文リスト
- Cycle-Constrained Adversarial Denoising Convolutional Network for PET Image Denoising: Multi-Dimensional Validation on Large Datasets with Reader Study and Real Low-Dose Data [9.160782425067712]
低線量スキャンから高画質画像を再構成するためのCycle-DCN(Cycle-versa Adrial Denoising Convolutional Network)を提案する。
1,224名の患者から得られた生のPET脳データからなる大規模なデータセットを用いて実験を行った。
サイクルDCNは平均ピーク信号対雑音比(PSNR)、SSIM、正規化ルート平均角誤差(NRMSE)を3つの線量レベルで改善する。
論文 参考訳(メタデータ) (2024-10-31T04:34:28Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Deep-ER: Deep Learning ECCENTRIC Reconstruction for fast high-resolution neurometabolic imaging [3.3771864230870072]
変化した神経代謝は、多くの神経疾患や脳がんにおいて重要な病理機構である。
ディープラーニングECCENTRIC再構成は、従来の方法よりも600倍高速な再構築を提供する。
論文 参考訳(メタデータ) (2024-09-26T21:20:51Z) - Deep Learning-based Intraoperative MRI Reconstruction [0.0]
深層学習(DL)モデルは,iMRIプロトコルのデータを模倣するために,高速MRIニューロデータセットを用いて訓練された。
従来の圧縮感 (CS) 法と訓練されたDL再構成法との比較検討を行った。
読影者1,2,3症例のうち,33/40例,39/40例,8例のCS再建に対して,DL再建は好意的あるいは好意的であった。
論文 参考訳(メタデータ) (2024-01-23T13:57:50Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
心臓MRI再建における時間的相関を利用した畳み込みリカレントニューラルネットワーク(CRNN)アーキテクチャについて検討した。
これは、単一画像の超解像度リファインメントモジュールと組み合わせて、単一コイルの再構築を4.4%、正規化平均二乗誤差3.9%改善する。
提案モデルでは, ベースライン症例と比較して有意に拡張され, 心臓MRI再建のさらなる改善に有望な可能性を秘めている。
論文 参考訳(メタデータ) (2023-09-23T14:07:04Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - ReconResNet: Regularised Residual Learning for MR Image Reconstruction
of Undersampled Cartesian and Radial Data [0.3694429692322631]
データの一部(アンダーサンプリング)を無視して取得速度を上げることができる
これにより、解像度の低下や画像アーティファクトの導入など、画質が劣化する。
深層学習は研究の非常に重要な分野として現れ、逆問題の解決に大きな可能性を示してきました。
論文 参考訳(メタデータ) (2021-03-16T17:24:30Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。