論文の概要: Calibration-Aware Bayesian Learning
- arxiv url: http://arxiv.org/abs/2305.07504v2
- Date: Fri, 12 Apr 2024 11:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 20:15:54.651212
- Title: Calibration-Aware Bayesian Learning
- Title(参考訳): 校正を意識したベイズ学習
- Authors: Jiayi Huang, Sangwoo Park, Osvaldo Simeone,
- Abstract要約: 本稿では、キャリブレーション対応ベイズニューラルネットワーク(CA-BNN)と呼ばれる統合フレームワークを提案する。
ベイズ学習のように変分分布を最適化しながら、データ依存あるいはデータ非依存の正則化をそれぞれ適用する。
予測キャリブレーション誤差(ECE)と信頼性図を用いて,提案手法の利点を検証した。
- 参考スコア(独自算出の注目度): 37.82259435084825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models, including modern systems like large language models, are well known to offer unreliable estimates of the uncertainty of their decisions. In order to improve the quality of the confidence levels, also known as calibration, of a model, common approaches entail the addition of either data-dependent or data-independent regularization terms to the training loss. Data-dependent regularizers have been recently introduced in the context of conventional frequentist learning to penalize deviations between confidence and accuracy. In contrast, data-independent regularizers are at the core of Bayesian learning, enforcing adherence of the variational distribution in the model parameter space to a prior density. The former approach is unable to quantify epistemic uncertainty, while the latter is severely affected by model misspecification. In light of the limitations of both methods, this paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs), that applies both regularizers while optimizing over a variational distribution as in Bayesian learning. Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
- Abstract(参考訳): 大規模言語モデルのような近代的なシステムを含むディープラーニングモデルは、彼らの決定の不確実性に対する信頼できない見積もりを提供することでよく知られている。
モデルのキャリブレーション(キャリブレーション)として知られる信頼性レベルの品質を改善するために、一般的なアプローチでは、トレーニング損失にデータ依存またはデータ非依存の正規化項を追加する必要がある。
データ依存型正規化器は、信頼度と精度のずれを罰する従来の頻繁な学習の文脈で最近導入された。
対照的に、データ非依存の正則化器はベイズ学習の核であり、モデルパラメータ空間における変分分布を先行密度に順守する。
前者のアプローチではてんかんの不確かさを定量化できないが、後者はモデルミス種別の影響を強く受けている。
本稿では,両手法の限界を鑑みて,正規化アルゴリズムを応用しつつ,ベイズ学習の変分分布を最適化し,キャリブレーションを意識したベイズニューラルネットワーク(CA-BNN)と呼ばれる統合フレームワークを提案する。
予測キャリブレーション誤差(ECE)と信頼性図を用いて,提案手法の利点を検証した。
関連論文リスト
- Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors [22.39558434131574]
モデルキャリブレーションの代替視点として一貫性の概念を導入する。
本稿では,入力間の一貫性に基づいて信頼度を調整する,一貫性(CC)と呼ばれるポストホックキャリブレーション手法を提案する。
また,ロジットレベルでの摂動は計算効率を著しく向上させることを示した。
論文 参考訳(メタデータ) (2024-10-16T06:55:02Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - On double-descent in uncertainty quantification in overparametrized
models [24.073221004661427]
不確かさの定量化は、信頼性と信頼性のある機械学習における中心的な課題である。
最適正規化推定器のキャリブレーション曲線において, 分類精度とキャリブレーションのトレードオフを示す。
これは経験的ベイズ法とは対照的であり、高次一般化誤差と過度パラメトリゼーションにもかかわらず、我々の設定では十分に校正されていることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:01:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Calibrate and Prune: Improving Reliability of Lottery Tickets Through
Prediction Calibration [40.203492372949576]
未確認の信頼を持つ監視されたモデルは、誤った予測をしたとしても過信される傾向がある。
パラメータの過剰なネットワークにおける明確な信頼度校正が、その結果の宝くじの品質に与える影響について検討する。
我々の実証研究は、キャリブレーション機構を含むと、より効果的な宝くじチケットにつながることを明らかにしている。
論文 参考訳(メタデータ) (2020-02-10T15:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。