Boosting X-formers with Structured Matrix for Long Sequence Time Series Forecasting
- URL: http://arxiv.org/abs/2405.12462v3
- Date: Thu, 24 Oct 2024 01:52:17 GMT
- Title: Boosting X-formers with Structured Matrix for Long Sequence Time Series Forecasting
- Authors: Zhicheng Zhang, Yong Wang, Shaoqi Tan, Bowei Xia, Yujie Luo,
- Abstract summary: We propose a novel architectural framework that enhances Transformer models through the integration of Surrogate Attention Blocks (SAB) and Surrogate Feed-Forward Neural Network Blocks (SFB)
Experiments on nine Transformer variants across five distinct time series tasks demonstrate an average performance improvement of 9.45%, alongside a 46% reduction in model size.
- Score: 7.3758245014991255
- License:
- Abstract: Transformer-based models for long sequence time series forecasting problems have gained significant attention due to their exceptional forecasting precision. However, the self-attention mechanism introduces challenges in terms of computational efficiency due to its quadratic time complexity. To address these issues, we propose a novel architectural framework that enhances Transformer models through the integration of Surrogate Attention Blocks (SAB) and Surrogate Feed-Forward Neural Network Blocks (SFB). They replace the self-attention and feed-forward layer by leveraging structured matrices that reduce both time and space complexity while maintaining the expressive power of the original self-attention mechanism and feed-forward network. The equivalence of this substitution is fully demonstrated. Extensive experiments on nine Transformer variants across five distinct time series tasks demonstrate an average performance improvement of 9.45%, alongside a 46% reduction in model size. These results confirm the efficacy of our surrogate-based approach in maintaining prediction accuracy while significantly boosting computational efficiency.
Related papers
- Local Attention Mechanism: Boosting the Transformer Architecture for Long-Sequence Time Series Forecasting [8.841114905151152]
Local Attention Mechanism (LAM) is an efficient attention mechanism tailored for time series analysis.
LAM exploits the continuity properties of time series to reduce the number of attention scores computed.
We present an algorithm for implementing LAM in algebra tensor that runs in time and memory O(nlogn)
arXiv Detail & Related papers (2024-10-04T11:32:02Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
We introduce SPARSEK Attention, a novel sparse attention mechanism designed to overcome computational and memory obstacles.
Our approach integrates a scoring network and a differentiable top-k mask operator, SPARSEK, to select a constant number of KV pairs for each query.
Experimental results reveal that SPARSEK Attention outperforms previous sparse attention methods.
arXiv Detail & Related papers (2024-06-24T15:55:59Z) - UnitNorm: Rethinking Normalization for Transformers in Time Series [9.178527914585446]
Normalization techniques are crucial for enhancing Transformer models' performance and stability in time series analysis tasks.
We propose UnitNorm, a novel approach that scales input vectors by their norms and modulates attention patterns.
UnitNorm's effectiveness is demonstrated across diverse time series analysis tasks, including forecasting, classification, and anomaly detection.
arXiv Detail & Related papers (2024-05-24T19:58:25Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
Time series forecasting is essential for many practical applications.
Transformers' key feature, the attention mechanism, dynamically fusing embeddings to enhance data representation, often relegating attention weights to a byproduct role.
Our approach elevates attention weights as the primary representation for time series, capitalizing on the temporal relationships among data points to improve forecasting accuracy.
arXiv Detail & Related papers (2024-02-08T03:00:50Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - CARD: Channel Aligned Robust Blend Transformer for Time Series
Forecasting [50.23240107430597]
We design a special Transformer, i.e., Channel Aligned Robust Blend Transformer (CARD for short), that addresses key shortcomings of CI type Transformer in time series forecasting.
First, CARD introduces a channel-aligned attention structure that allows it to capture both temporal correlations among signals.
Second, in order to efficiently utilize the multi-scale knowledge, we design a token blend module to generate tokens with different resolutions.
Third, we introduce a robust loss function for time series forecasting to alleviate the potential overfitting issue.
arXiv Detail & Related papers (2023-05-20T05:16:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
arXiv Detail & Related papers (2023-01-05T13:59:29Z) - ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting [35.76867542099019]
We propose ETSFormer, a novel time-series Transformer architecture, which exploits the principle of exponential smoothing in improving Transformers for time-series forecasting.
In particular, inspired by the classical exponential smoothing methods in time-series forecasting, we propose the novel exponential smoothing attention (ESA) and frequency attention (FA) to replace the self-attention mechanism in vanilla Transformers, thus improving both accuracy and efficiency.
arXiv Detail & Related papers (2022-02-03T02:50:44Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting [68.86835407617778]
Autoformer is a novel decomposition architecture with an Auto-Correlation mechanism.
In long-term forecasting, Autoformer yields state-of-the-art accuracy, with a relative improvement on six benchmarks.
arXiv Detail & Related papers (2021-06-24T13:43:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.