論文の概要: Learning Partially Aligned Item Representation for Cross-Domain Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2405.12473v3
- Date: Wed, 21 Aug 2024 06:31:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 22:25:29.060780
- Title: Learning Partially Aligned Item Representation for Cross-Domain Sequential Recommendation
- Title(参考訳): クロスドメインシーケンスレコメンデーションのための部分アライズされた項目表現の学習
- Authors: Mingjia Yin, Hao Wang, Wei Guo, Yong Liu, Zhi Li, Sirui Zhao, Zhen Wang, Defu Lian, Enhong Chen,
- Abstract要約: クロスドメインシーケンシャルレコメンデーションは、ドメイン間でのユーザのシーケンシャルな好みを明らかにすることを目的としている。
ミスアライメントアイテム表現は、サブ最適シーケンシャルモデリングとユーザ表現アライメントにつながる可能性がある。
textbfCross- domain item representation textbfAlignment for textbfCross-textbfDomain textbfSequential textbfRecommendationを提案する。
- 参考スコア(独自算出の注目度): 72.73379646418435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-domain sequential recommendation (CDSR) aims to uncover and transfer users' sequential preferences across multiple recommendation domains. While significant endeavors have been made, they primarily concentrated on developing advanced transfer modules and aligning user representations using self-supervised learning techniques. However, the problem of aligning item representations has received limited attention, and misaligned item representations can potentially lead to sub-optimal sequential modeling and user representation alignment. To this end, we propose a model-agnostic framework called \textbf{C}ross-domain item representation \textbf{A}lignment for \textbf{C}ross-\textbf{D}omain \textbf{S}equential \textbf{R}ecommendation (\textbf{CA-CDSR}), which achieves sequence-aware generation and adaptively partial alignment for item representations. Specifically, we first develop a sequence-aware feature augmentation strategy, which captures both collaborative and sequential item correlations, thus facilitating holistic item representation generation. Next, we conduct an empirical study to investigate the partial representation alignment problem from a spectrum perspective. It motivates us to devise an adaptive spectrum filter, achieving partial alignment adaptively. Furthermore, the aligned item representations can be fed into different sequential encoders to obtain user representations. The entire framework is optimized in a multi-task learning paradigm with an annealing strategy. Extensive experiments have demonstrated that CA-CDSR can surpass state-of-the-art baselines by a significant margin and can effectively align items in representation spaces to enhance performance.
- Abstract(参考訳): クロスドメインシーケンシャルレコメンデーション(CDSR)は、複数のレコメンデーションドメインにわたるユーザのシーケンシャルレコメンデーションの発見と転送を目的としている。
重要な取り組みは行われているが、彼らは主に高度な転送モジュールの開発と、自己教師付き学習技術によるユーザ表現の整合に集中している。
しかし、アイテム表現の整合性の問題に注意が払われており、不整合性のあるアイテム表現は、サブ最適シーケンシャルなモデリングやユーザ表現の整合性につながる可能性がある。
そこで,本論文では,課題表現のシーケンス認識と適応的部分的アライメントを実現するための,モデル非依存のフレームワークである \textbf{C}ross-\textbf{A}lignment for \textbf{C}ross-\textbf{D}omain \textbf{S}equential \textbf{R}ecommendation (\textbf{CA-CDSR})を提案する。
具体的には、まず、協調的な項目相関とシーケンシャルな項目相関を捕捉し、総合的な項目表現生成を容易にするシーケンス認識機能拡張戦略を開発する。
次に、スペクトルの観点から部分表現アライメント問題を調べるための実証的研究を行う。
適応スペクトルフィルタを考案し、部分アライメントを適応的に達成する。
さらに、アライメントされたアイテム表現を異なるシーケンシャルエンコーダに入力してユーザ表現を得ることもできる。
フレームワーク全体は、アニーリング戦略を備えたマルチタスク学習パラダイムで最適化されている。
大規模な実験により、CA-CDSRは最先端のベースラインをかなり上回り、表現空間内のアイテムを効果的に整列させて性能を向上させることができることが示された。
関連論文リスト
- MISSRec: Pre-training and Transferring Multi-modal Interest-aware
Sequence Representation for Recommendation [61.45986275328629]
逐次レコメンデーションのためのマルチモーダル事前学習・転送学習フレームワークであるMISSRecを提案する。
ユーザ側ではトランスフォーマーベースのエンコーダデコーダモデルを設計し、コンテキストエンコーダがシーケンスレベルのマルチモーダルユーザ興味を捉えることを学習する。
候補項目側では,ユーザ適応項目表現を生成するために動的融合モジュールを採用する。
論文 参考訳(メタデータ) (2023-08-22T04:06:56Z) - Plug-and-Play Regulators for Image-Text Matching [76.28522712930668]
微細な対応と視覚的セマンティックなアライメントの爆発は、画像とテキストのマッチングにおいて大きな可能性を秘めている。
我々は、メッセージ出力を効率的にエンコードして、コンテキストを自動生成し、モーダル表現を集約する、シンプルだが非常に効果的な2つのレギュレータを開発した。
MSCOCOとFlickr30Kデータセットの実験は、複数のモデルで印象的で一貫したR@1ゲインをもたらすことができることを実証している。
論文 参考訳(メタデータ) (2023-03-23T15:42:05Z) - Towards Lightweight Cross-domain Sequential Recommendation via External
Attention-enhanced Graph Convolution Network [7.1102362215550725]
クロスドメインシークエンシャルレコメンデーション(CSR)は、複数のドメインからのインタラクションをモデル化することで、重複したユーザの振る舞いパターンの進化を描いている。
上記の課題,すなわちLEA-GCNを解決するために,軽量な外部注意強化GCNベースのフレームワークを導入する。
フレームワークの構造をさらに緩和し、ユーザ固有のシーケンシャルパターンを集約するために、新しい二重チャネル外部注意(EA)コンポーネントを考案する。
論文 参考訳(メタデータ) (2023-02-07T03:06:29Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
本稿では、ビュー固有表現をビュー共通表現に融合する深層融合ネットワークを提案する。
また、ビュー共通表現とビュー固有表現を一致させる非対称なコントラスト戦略を設計する。
不完全な視点では,提案手法は競合相手よりもノイズ干渉に抵抗する。
論文 参考訳(メタデータ) (2022-12-28T07:21:05Z) - Framework-agnostic Semantically-aware Global Reasoning for Segmentation [29.69187816377079]
本稿では,画像特徴を潜在表現に投影し,それら間の関係を推論するコンポーネントを提案する。
我々の設計では、活性化領域が空間的に不整合であることを保証することにより、潜在領域が意味概念を表現することを奨励している。
潜在トークンはセマンティックに解釈可能で多様性があり、下流タスクに転送可能な豊富な機能セットを提供します。
論文 参考訳(メタデータ) (2022-12-06T21:42:05Z) - Learning Vector-Quantized Item Representation for Transferable
Sequential Recommenders [33.406897794088515]
VQ-Recは、転送可能なシーケンシャルリコメンダのためのベクトル量子化アイテム表現を学ぶための新しいアプローチである。
半合成および混合ドメインのコード表現をハードな負として用い、拡張されたコントラスト事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-10-22T00:43:14Z) - Towards Universal Sequence Representation Learning for Recommender
Systems [98.02154164251846]
我々はUniSRecという新しいユニバーサルシーケンス表現学習手法を提案する。
提案手法は、項目の関連記述テキストを用いて、異なる推薦シナリオ間で転送可能な表現を学習する。
我々のアプローチは、パラメータ効率のよい方法で、新しいレコメンデーションドメインやプラットフォームに効果的に移行できます。
論文 参考訳(メタデータ) (2022-06-13T07:21:56Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - AlignSeg: Feature-Aligned Segmentation Networks [109.94809725745499]
本稿では,機能集約プロセスにおける誤アライメント問題に対処するために,特徴適応型ネットワーク(AlignSeg)を提案する。
我々のネットワークは、それぞれ82.6%と45.95%という新しい最先端のmIoUスコアを達成している。
論文 参考訳(メタデータ) (2020-02-24T10:00:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。