CLRKDNet: Speeding up Lane Detection with Knowledge Distillation
- URL: http://arxiv.org/abs/2405.12503v1
- Date: Tue, 21 May 2024 05:20:04 GMT
- Title: CLRKDNet: Speeding up Lane Detection with Knowledge Distillation
- Authors: Weiqing Qi, Guoyang Zhao, Fulong Ma, Linwei Zheng, Ming Liu,
- Abstract summary: We introduce CLRKDNet, a streamlined model that balances detection accuracy with real-time performance.
Our method reduces inference time by up to 60% while maintaining detection accuracy comparable to CLRNet.
- Score: 4.015241891536452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Road lanes are integral components of the visual perception systems in intelligent vehicles, playing a pivotal role in safe navigation. In lane detection tasks, balancing accuracy with real-time performance is essential, yet existing methods often sacrifice one for the other. To address this trade-off, we introduce CLRKDNet, a streamlined model that balances detection accuracy with real-time performance. The state-of-the-art model CLRNet has demonstrated exceptional performance across various datasets, yet its computational overhead is substantial due to its Feature Pyramid Network (FPN) and muti-layer detection head architecture. Our method simplifies both the FPN structure and detection heads, redesigning them to incorporate a novel teacher-student distillation process alongside a newly introduced series of distillation losses. This combination reduces inference time by up to 60% while maintaining detection accuracy comparable to CLRNet. This strategic balance of accuracy and speed makes CLRKDNet a viable solution for real-time lane detection tasks in autonomous driving applications.
Related papers
- ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - CLRmatchNet: Enhancing Curved Lane Detection with Deep Matching Process [0.6144680854063939]
Lane detection plays a crucial role in autonomous driving by providing vital data to ensure safe navigation.
Modern algorithms rely on anchor-based detectors, which are then followed by a label-assignment process to categorize training detections as positive or negative instances.
Our research introduces MatchNet, a deep learning sub module-based approach aimed at improving the label assignment process.
arXiv Detail & Related papers (2023-09-26T19:05:18Z) - Global Context Aggregation Network for Lightweight Saliency Detection of
Surface Defects [70.48554424894728]
We develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure.
First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module.
The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods.
arXiv Detail & Related papers (2023-09-22T06:19:11Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - StreamYOLO: Real-time Object Detection for Streaming Perception [84.2559631820007]
We endow the models with the capacity of predicting the future, significantly improving the results for streaming perception.
We consider multiple velocities driving scene and propose Velocity-awared streaming AP (VsAP) to jointly evaluate the accuracy.
Our simple method achieves the state-of-the-art performance on Argoverse-HD dataset and improves the sAP and VsAP by 4.7% and 8.2% respectively.
arXiv Detail & Related papers (2022-07-21T12:03:02Z) - Simple Training Strategies and Model Scaling for Object Detection [38.27709720726833]
We benchmark improvements on the vanilla ResNet-FPN backbone with RetinaNet and RCNN detectors.
The vanilla detectors are improved by 7.7% in accuracy while being 30% faster in speed.
Our largest Cascade RCNN-RS models achieve 52.9% AP with a ResNet152-FPN backbone and 53.6% with a SpineNet143L backbone.
arXiv Detail & Related papers (2021-06-30T18:41:47Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - A Unified Light Framework for Real-time Fault Detection of Freight Train
Images [16.721758280029302]
Real-time fault detection for freight trains plays a vital role in guaranteeing the security and optimal operation of railway transportation.
Despite the promising results for deep learning based approaches, the performance of these fault detectors on freight train images are far from satisfactory in both accuracy and efficiency.
This paper proposes a unified light framework to improve detection accuracy while supporting a real-time operation with a low resource requirement.
arXiv Detail & Related papers (2021-01-31T05:10:20Z) - Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems [1.6037469030022993]
Confidence-Triggered Detection (CTD) is an innovative approach that strategically bypasses object detection for frames closely resembling intermediate states.
CTD not only enhances tracking speed but also preserves accuracy, surpassing existing tracking algorithms.
Our experiments underscore the robustness and versatility of the CTD framework, demonstrating its potential to enable real-time tracking in resource-constrained environments.
arXiv Detail & Related papers (2019-02-02T01:52:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.