Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems
- URL: http://arxiv.org/abs/1902.00615v6
- Date: Wed, 13 Nov 2024 18:32:53 GMT
- Title: Confidence Trigger Detection: Accelerating Real-time Tracking-by-detection Systems
- Authors: Zhicheng Ding, Zhixin Lai, Siyang Li, Panfeng Li, Qikai Yang, Edward Wong,
- Abstract summary: Confidence-Triggered Detection (CTD) is an innovative approach that strategically bypasses object detection for frames closely resembling intermediate states.
CTD not only enhances tracking speed but also preserves accuracy, surpassing existing tracking algorithms.
Our experiments underscore the robustness and versatility of the CTD framework, demonstrating its potential to enable real-time tracking in resource-constrained environments.
- Score: 1.6037469030022993
- License:
- Abstract: Real-time object tracking necessitates a delicate balance between speed and accuracy, a challenge exacerbated by the computational demands of deep learning methods. In this paper, we propose Confidence-Triggered Detection (CTD), an innovative approach that strategically bypasses object detection for frames closely resembling intermediate states, leveraging tracker confidence scores. CTD not only enhances tracking speed but also preserves accuracy, surpassing existing tracking algorithms. Through extensive evaluation across various tracker confidence thresholds, we identify an optimal trade-off between tracking speed and accuracy, providing crucial insights for parameter fine-tuning and enhancing CTD's practicality in real-world scenarios. Our experiments across diverse detection models underscore the robustness and versatility of the CTD framework, demonstrating its potential to enable real-time tracking in resource-constrained environments.
Related papers
- UTrack: Multi-Object Tracking with Uncertain Detections [37.826006378381955]
We introduce, for the first time, a fast way to obtain the empirical predictive distribution during object detection.
Our mechanism can easily be integrated into state-of-the-art trackers, enabling them to fully exploit the uncertainty in the detections.
We demonstrate the effectiveness of our contribution on a variety of benchmarks, such as MOT17, MOT20, DanceTrack, and KITTI.
arXiv Detail & Related papers (2024-08-30T08:34:51Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Deep Learning-Based Robust Multi-Object Tracking via Fusion of mmWave Radar and Camera Sensors [6.166992288822812]
Multi-Object Tracking plays a critical role in ensuring safer and more efficient navigation through complex traffic scenarios.
This paper presents a novel deep learning-based method that integrates radar and camera data to enhance the accuracy and robustness of Multi-Object Tracking in autonomous driving systems.
arXiv Detail & Related papers (2024-07-10T21:09:09Z) - RTracker: Recoverable Tracking via PN Tree Structured Memory [71.05904715104411]
We propose a recoverable tracking framework, RTracker, that uses a tree-structured memory to dynamically associate a tracker and a detector to enable self-recovery.
Specifically, we propose a Positive-Negative Tree-structured memory to chronologically store and maintain positive and negative target samples.
Our core idea is to use the support samples of positive and negative target categories to establish a relative distance-based criterion for a reliable assessment of target loss.
arXiv Detail & Related papers (2024-03-28T08:54:40Z) - PNAS-MOT: Multi-Modal Object Tracking with Pareto Neural Architecture Search [64.28335667655129]
Multiple object tracking is a critical task in autonomous driving.
As tracking accuracy improves, neural networks become increasingly complex, posing challenges for their practical application in real driving scenarios due to the high level of latency.
In this paper, we explore the use of the neural architecture search (NAS) methods to search for efficient architectures for tracking, aiming for low real-time latency while maintaining relatively high accuracy.
arXiv Detail & Related papers (2024-03-23T04:18:49Z) - Adaptive Confidence Threshold for ByteTrack in Multi-Object Tracking [9.156625199253947]
ByteTrack, a simple tracking algorithm, enables the simultaneous tracking of multiple objects.
We introduce a novel and adaptive approach to differentiate between high and low-confidence detections.
arXiv Detail & Related papers (2023-12-04T06:01:46Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Reliable Multi-Object Tracking in the Presence of Unreliable Detections [1.8718768859805923]
We present Robust Confidence Tracking (RCT), an algorithm designed to maintain robust performance even when detection quality is poor.
RCT takes a fundamentally different approach, relying on the exact detection confidence values to tracks, extend tracks, and filter tracks.
In an evaluation on FISHTRAC, we find RCT outperforms other algorithms when provided with imperfect detections.
arXiv Detail & Related papers (2021-12-15T18:53:27Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
arXiv Detail & Related papers (2021-12-15T15:57:33Z) - Continuity-Discrimination Convolutional Neural Network for Visual Object
Tracking [150.51667609413312]
This paper proposes a novel model, named Continuity-Discrimination Convolutional Neural Network (CD-CNN) for visual object tracking.
To address this problem, CD-CNN models temporal appearance continuity based on the idea of temporal slowness.
In order to alleviate inaccurate target localization and drifting, we propose a novel notion, object-centroid.
arXiv Detail & Related papers (2021-04-18T06:35:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.