論文の概要: Unleash Graph Neural Networks from Heavy Tuning
- arxiv url: http://arxiv.org/abs/2405.12521v1
- Date: Tue, 21 May 2024 06:23:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 14:18:37.197313
- Title: Unleash Graph Neural Networks from Heavy Tuning
- Title(参考訳): ヘビーチューニングによるアンリーシュグラフニューラルネットワーク
- Authors: Lequan Lin, Dai Shi, Andi Han, Zhiyong Wang, Junbin Gao,
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ型データ用に設計されたディープラーニングアーキテクチャである。
本稿では,光チューニングされた粗い探索中に保存されたチェックポイントから学習することで,高性能なGNNを直接生成するグラフ条件付き潜時拡散フレームワーク(GNN-Diff)を提案する。
- 参考スコア(独自算出の注目度): 33.948899558876604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) are deep-learning architectures designed for graph-type data, where understanding relationships among individual observations is crucial. However, achieving promising GNN performance, especially on unseen data, requires comprehensive hyperparameter tuning and meticulous training. Unfortunately, these processes come with high computational costs and significant human effort. Additionally, conventional searching algorithms such as grid search may result in overfitting on validation data, diminishing generalization accuracy. To tackle these challenges, we propose a graph conditional latent diffusion framework (GNN-Diff) to generate high-performing GNNs directly by learning from checkpoints saved during a light-tuning coarse search. Our method: (1) unleashes GNN training from heavy tuning and complex search space design; (2) produces GNN parameters that outperform those obtained through comprehensive grid search; and (3) establishes higher-quality generation for GNNs compared to diffusion frameworks designed for general neural networks.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ型データ用に設計されたディープラーニングアーキテクチャであり、個々の観測間の関係を理解することが重要である。
しかし、特に目に見えないデータにおいて、有望なGNNパフォーマンスを達成するには、包括的なハイパーパラメータチューニングと綿密なトレーニングが必要である。
残念なことに、これらのプロセスには高い計算コストと人的労力が伴う。
さらに、グリッド探索のような従来の探索アルゴリズムは、検証データに過度に適合し、一般化精度が低下する可能性がある。
これらの課題に対処するために、光チューニングされた粗い探索中に保存されたチェックポイントから学習することで、高性能なGNNを直接生成するグラフ条件付き潜時拡散フレームワーク(GNN-Diff)を提案する。
提案手法は,(1)重度チューニングと複雑な探索空間設計からGNNトレーニングを解き放ち,(2)網羅的なグリッド探索により得られたパラメータよりも優れたGNNパラメータを生成し,(3)汎用ニューラルネットワーク用に設計された拡散フレームワークと比較して,GNNの高品質な生成を確立する。
関連論文リスト
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - Towards Understanding Graph Neural Networks: An Algorithm Unrolling
Perspective [9.426760895586428]
本稿では,グラフ信号の復号化問題に対して,truncated Optimizationアルゴリズムに基づいて構築されたアンロールネットワークのクラスを紹介する。
GNNモデルのトレーニングプロセスは、低レベルのGSD問題による二段階最適化問題の解決と見なすことができる。
UGDGNNという表現モデル、すなわち、非線形勾配勾配GNNは、魅力的な理論的性質を継承する。
論文 参考訳(メタデータ) (2022-06-09T12:54:03Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。