論文の概要: AutoSGNN: Automatic Propagation Mechanism Discovery for Spectral Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2412.12483v2
- Date: Wed, 18 Dec 2024 07:57:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 13:25:00.192697
- Title: AutoSGNN: Automatic Propagation Mechanism Discovery for Spectral Graph Neural Networks
- Title(参考訳): AutoSGNN: スペクトルグラフニューラルネットワークのための自動伝搬機構発見
- Authors: Shibing Mo, Kai Wu, Qixuan Gao, Xiangyi Teng, Jing Liu,
- Abstract要約: 本稿では,スペクトルGNNにおける伝搬機構の自動検出フレームワークであるAutoSGNNを提案する。
本稿では,AutoSGNNの性能と効率の両面において,最先端のスペクトルGNNとグラフニューラルアーキテクチャ探索法より優れていることを示す。
- 参考スコア(独自算出の注目度): 6.755403881158429
- License:
- Abstract: In real-world applications, spectral Graph Neural Networks (GNNs) are powerful tools for processing diverse types of graphs. However, a single GNN often struggles to handle different graph types-such as homogeneous and heterogeneous graphs-simultaneously. This challenge has led to the manual design of GNNs tailored to specific graph types, but these approaches are limited by the high cost of labor and the constraints of expert knowledge, which cannot keep up with the rapid growth of graph data. To overcome these challenges, we propose AutoSGNN, an automated framework for discovering propagation mechanisms in spectral GNNs. AutoSGNN unifies the search space for spectral GNNs by integrating large language models with evolutionary strategies to automatically generate architectures that adapt to various graph types. Extensive experiments on nine widely-used datasets, encompassing both homophilic and heterophilic graphs, demonstrate that AutoSGNN outperforms state-of-the-art spectral GNNs and graph neural architecture search methods in both performance and efficiency.
- Abstract(参考訳): 現実世界のアプリケーションでは、スペクトルグラフニューラルネットワーク(GNN)は様々な種類のグラフを処理する強力なツールである。
しかし、単一のGNNは、同質グラフや異質グラフなど、異なるグラフタイプを扱うのにしばしば苦労する。
この課題は、特定のグラフタイプに合わせたGNNのマニュアル設計につながったが、これらのアプローチは、グラフデータの急速な成長に追従できない、高い作業コストと専門家の知識の制約によって制限されている。
これらの課題を克服するために,スペクトルGNNの伝搬機構を自動検出するAutoSGNNを提案する。
AutoSGNNは、大規模言語モデルと進化戦略を統合し、様々なグラフタイプに対応するアーキテクチャを自動的に生成することで、スペクトルGNNの検索空間を統一する。
ホモフィルグラフとヘテロフィルグラフの両方を含む9つの広く使用されているデータセットに関する広範な実験は、AutoSGNNが、最先端のスペクトルGNNとグラフニューラルアーキテクチャ探索法をパフォーマンスと効率の両方で上回っていることを実証している。
関連論文リスト
- Unleash Graph Neural Networks from Heavy Tuning [33.948899558876604]
グラフニューラルネットワーク(GNN)は、グラフ型データ用に設計されたディープラーニングアーキテクチャである。
本稿では,光チューニングされた粗い探索中に保存されたチェックポイントから学習することで,高性能なGNNを直接生成するグラフ条件付き潜時拡散フレームワーク(GNN-Diff)を提案する。
論文 参考訳(メタデータ) (2024-05-21T06:23:47Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
GNNを効率的に検索するためのARGNP(Automatic Relation-Aware Graph Network Proliferation)を提案する。
これらの操作は階層的なノード/リレーショナル情報を抽出し、グラフ上のメッセージパッシングのための異方的ガイダンスを提供する。
4つのグラフ学習タスクのための6つのデータセットの実験により、我々の手法によって生成されたGNNは、現在最先端の手作りおよび検索に基づくGNNよりも優れていることが示された。
論文 参考訳(メタデータ) (2022-05-31T10:38:04Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Graph Neural Networks for Graphs with Heterophily: A Survey [98.45621222357397]
異種グラフに対するグラフニューラルネットワーク(GNN)の総合的なレビューを提供する。
具体的には,既存の異好性GNNモデルを本質的に支配する系統分類法を提案する。
グラフヘテロフィリーと様々なグラフ研究領域の相関を議論し、より効果的なGNNの開発を促進することを目的とした。
論文 参考訳(メタデータ) (2022-02-14T23:07:47Z) - Overcoming Oversmoothness in Graph Convolutional Networks via Hybrid
Scattering Networks [11.857894213975644]
本稿では,従来のGCNフィルタと幾何散乱変換を用いて定義された帯域通過フィルタを組み合わせたハイブリッドグラフニューラルネットワーク(GNN)フレームワークを提案する。
理論的には, グラフからの構造情報を活用するために散乱フィルタの相補的な利点が確立され, 実験では様々な学習課題における手法の利点が示された。
論文 参考訳(メタデータ) (2022-01-22T00:47:41Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
本稿では、入力グラフと下流タスクに基づいて最適な曲率を適応的に学習する適応曲率探索ハイパーボリックグラフニューラルネットワークACE-HGNNを提案する。
複数の実世界のグラフデータセットの実験は、競争性能と優れた一般化能力を備えたモデル品質において、顕著で一貫したパフォーマンス改善を示す。
論文 参考訳(メタデータ) (2021-10-15T07:18:57Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。