論文の概要: Dynamic Identity-Guided Attention Network for Visible-Infrared Person Re-identification
- arxiv url: http://arxiv.org/abs/2405.12713v1
- Date: Tue, 21 May 2024 12:04:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 13:29:38.986762
- Title: Dynamic Identity-Guided Attention Network for Visible-Infrared Person Re-identification
- Title(参考訳): 可視赤外人物再識別のための動的アイデンティティ誘導注意ネットワーク
- Authors: Peng Gao, Yujian Lee, Hui Zhang, Xubo Liu, Yiyang Hu, Guquan Jing,
- Abstract要約: Visible-infrared person re-identification (VI-ReID) は、可視光と赤外線の同一性を持つ人物をマッチングすることを目的としている。
既存の方法は一般的に、画像や特徴レベルでのクロスモーダルな違いを橋渡ししようとする。
我々は、動的ID誘導型注意ネットワーク(DIAN)を導入し、アイデンティティ誘導型およびモダリティ一貫性のある埋め込みをマイニングする。
- 参考スコア(独自算出の注目度): 17.285526655788274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-infrared person re-identification (VI-ReID) aims to match people with the same identity between visible and infrared modalities. VI-ReID is a challenging task due to the large differences in individual appearance under different modalities. Existing methods generally try to bridge the cross-modal differences at image or feature level, which lacks exploring the discriminative embeddings. Effectively minimizing these cross-modal discrepancies relies on obtaining representations that are guided by identity and consistent across modalities, while also filtering out representations that are irrelevant to identity. To address these challenges, we introduce a dynamic identity-guided attention network (DIAN) to mine identity-guided and modality-consistent embeddings, facilitating effective bridging the gap between different modalities. Specifically, in DIAN, to pursue a semantically richer representation, we first use orthogonal projection to fuse the features from two connected coarse and fine layers. Furthermore, we first use dynamic convolution kernels to mine identity-guided and modality-consistent representations. More notably, a cross embedding balancing loss is introduced to effectively bridge cross-modal discrepancies by above embeddings. Experimental results on SYSU-MM01 and RegDB datasets show that DIAN achieves state-of-the-art performance. Specifically, for indoor search on SYSU-MM01, our method achieves 86.28% rank-1 accuracy and 87.41% mAP, respectively. Our code will be available soon.
- Abstract(参考訳): Visible-infrared person re-identification (VI-ReID) は、可視光と赤外線の同一性を持つ人物をマッチングすることを目的としている。
VI-ReIDは、異なるモダリティの下で個々の外観に大きな違いがあるため、難しい課題である。
既存の手法は一般的に、画像や特徴レベルでのクロスモーダルな違いを橋渡ししようとする。
これらのクロスモーダルな不一致を効果的に最小化することは、アイデンティティによって導かれ、モダリティ全体にわたって一貫した表現を得るだけでなく、アイデンティティとは無関係な表現をフィルタリングすることに依存する。
これらの課題に対処するために、動的ID誘導型注意ネットワーク(DIAN)を導入し、異なるモダリティ間のギャップを効果的に埋めることを可能にする。
特に、DIANでは、意味的にリッチな表現を追求するために、まず直交射影を用いて、2つの連結された粗い層と細い層から特徴を融合する。
さらに、まず動的畳み込みカーネルを用いて、アイデンティティとモダリティに一貫性のある表現をマイニングする。
さらに、上述の埋め込みによるクロスモーダルな差異を効果的に橋渡しするために、クロス埋め込みバランス損失が導入された。
SYSU-MM01とRegDBデータセットの実験結果は、DIANが最先端のパフォーマンスを達成することを示す。
具体的には,SYSU-MM01の屋内探索では,86.28%のランク1精度と87.41%のmAPを達成した。
私たちのコードはまもなく利用可能になります。
関連論文リスト
- Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
本稿では,2つの部分空間におけるモダリティ共有特徴を関連づける形状学習パラダイムを提案する。
SYSU-MM01, RegDB, HITSZ-VCMデータセットを用いた実験により, 本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-09T10:22:10Z) - MRCN: A Novel Modality Restitution and Compensation Network for
Visible-Infrared Person Re-identification [36.88929785476334]
本稿では,2つのモダリティ間のギャップを狭めるために,新しいモダリティ再構成補償ネットワーク(MRCN)を提案する。
この手法はRanc-1の95.1%とRegDBデータセットのmAPの89.2%を達成している。
論文 参考訳(メタデータ) (2023-03-26T05:03:18Z) - CycleTrans: Learning Neutral yet Discriminative Features for
Visible-Infrared Person Re-Identification [79.84912525821255]
Visible-infrared person re-identification (VI-ReID) は、可視・赤外線モダリティ間で同一人物をマッチングするタスクである。
既存のVI-ReID手法は主に、特徴識別性を犠牲にして、モダリティを越えて一般的な特徴を学習することに焦点を当てている。
ニュートラルかつ差別的な特徴学習のための新しいサイクル構築型ネットワークであるCycleTransを提案する。
論文 参考訳(メタデータ) (2022-08-21T08:41:40Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - CMTR: Cross-modality Transformer for Visible-infrared Person
Re-identification [38.96033760300123]
可視赤外人物再識別のための相互モダリティトランスフォーマー法(CMTR)
我々は,モダリティの情報をエンコードするために,トークン埋め込みと融合した新しいモダリティ埋め込みを設計する。
提案するCMTRモデルの性能は,既存のCNN方式をはるかに上回っている。
論文 参考訳(メタデータ) (2021-10-18T03:12:59Z) - Learning by Aligning: Visible-Infrared Person Re-identification using
Cross-Modal Correspondences [42.16002082436691]
VI-reIDの主な課題は、個人画像間のクラス内変動と、可視画像と赤外線画像の相互差である。
我々はこれらの問題に統一的な方法で対処する新しい特徴学習フレームワークを導入する。
論文 参考訳(メタデータ) (2021-08-17T03:38:51Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。