OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models
- URL: http://arxiv.org/abs/2405.12843v1
- Date: Tue, 21 May 2024 14:50:20 GMT
- Title: OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models
- Authors: Zhaojian Yu, Yinghao Wu, Zhuotao Deng, Yansong Tang, Xiao-Ping Zhang,
- Abstract summary: OpenCarbonEval is a framework for integrating large-scale models across diverse modalities to predict carbon emissions.
We show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models.
- Score: 16.93272879722972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, large-scale auto-regressive models have made significant progress in various tasks, such as text or video generation. However, the environmental impact of these models has been largely overlooked, with a lack of assessment and analysis of their carbon footprint. To address this gap, we introduce OpenCarbonEval, a unified framework for integrating large-scale models across diverse modalities to predict carbon emissions, which could provide AI service providers and users with a means to estimate emissions beforehand and help mitigate the environmental pressure associated with these models. In OpenCarbonEval, we propose a dynamic throughput modeling approach that could capture workload and hardware fluctuations in the training process for more precise emissions estimates. Our evaluation results demonstrate that OpenCarbonEval can more accurately predict training emissions than previous methods, and can be seamlessly applied to different modal tasks. Specifically, we show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models. By promoting sustainable AI development and deployment, OpenCarbonEval can help reduce the environmental impact of large-scale models and contribute to a more environmentally responsible future for the AI community.
Related papers
- Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - Green AI: Exploring Carbon Footprints, Mitigation Strategies, and Trade Offs in Large Language Model Training [9.182429523979598]
We evaluate the CO2 emissions of well-known large language models, which have an especially high carbon footprint due to their significant amount of model parameters.
We argue for the training of LLMs in a way that is responsible and sustainable by suggesting measures for reducing carbon emissions.
arXiv Detail & Related papers (2024-04-01T15:01:45Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Forecasting emissions through Kaya identity using Neural Ordinary
Differential Equations [3.4901787251083163]
We use a Neural ODE model to predict the evolution of several indicators related to carbon emissions on a country-level.
We conclude that this machine-learning approach can be used to produce a wide range of results and give relevant insight to policymakers.
arXiv Detail & Related papers (2022-01-07T12:34:01Z) - Curb Your Carbon Emissions: Benchmarking Carbon Emissions in Machine
Translation [0.0]
We study the carbon efficiency and look for alternatives to reduce the overall environmental impact of training models.
In our work, we assess the performance of models for machine translation, across multiple language pairs.
We examine the various components of these models to analyze aspects of our pipeline that can be optimized to reduce these carbon emissions.
arXiv Detail & Related papers (2021-09-26T12:30:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.