CEGI: Measuring the trade-off between efficiency and carbon emissions for SLMs and VLMs
- URL: http://arxiv.org/abs/2412.02602v1
- Date: Tue, 03 Dec 2024 17:32:47 GMT
- Title: CEGI: Measuring the trade-off between efficiency and carbon emissions for SLMs and VLMs
- Authors: Abhas Kumar, Kapil Pathak, Rajesh Kavuru, Prabhakar Srinivasan,
- Abstract summary: This paper analyzes the performance of Small Language Models (SLMs) and Vision Language Models (VLMs)
To quantify the trade-off between model performance and carbon emissions, we introduce a novel metric called CEGI (Carbon Efficient Gain Index)
Our findings suggest that the marginal gains in accuracy from larger models do not justify the substantial increase in carbon emissions.
- Score: 0.0
- License:
- Abstract: This paper analyzes the performance of Small Language Models (SLMs) and Vision Language Models (VLMs) and evaluates the trade-off between model performance and carbon emissions across 4 essential tasks: Image Captioning, Visual Question Answering (VQA), Dialogue Summarization and Text-to-SQL conversion. Various SLMs and VLMs belonging to the Qwen and LLaMA architecture family are chosen and variants based on model size in terms of the number of parameters, quantization level and fine-tuning parameters are evaluated. The model variant's performance and carbon emissions are calculated. To quantify the trade-off between model performance and carbon emissions, we introduce a novel metric called CEGI (Carbon Efficient Gain Index). This metric represents the carbon emission per unit percentage gain per million trainable parameters . This metric provides a normalized measure to compare model's efficiency in terms of performance improvement relative to their environmental cost. The experiment's outcome demonstrates that fine-tuning SLMs and VLMs can achieve performance levels comparable to Large Language Models (LLMs) while producing significantly less carbon emissions. Our findings suggest that the marginal gains in accuracy from larger models do not justify the substantial increase in carbon emissions. Leveraging lower-bit quantization levels, the proposed metric further enhances energy efficiency without compromising performance. This study highlights balancing high performance and environmental sustainability. It offers a valuable metric for selecting models suitable for environmentally-friendly AI development.
Related papers
- Unveiling Environmental Impacts of Large Language Model Serving: A Functional Unit View [2.5832043241251337]
Large language models (LLMs) offer powerful capabilities but come with significant environmental costs, particularly in carbon emissions.
We introduce the concept of a functional unit (FU) and develop FUEL, the first FU-based framework for evaluating LLM's environmental impact.
Our findings highlight the potential for reducing carbon emissions by optimizing model selection, deployment strategies, and hardware choices.
arXiv Detail & Related papers (2025-02-16T20:20:18Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - OpenCarbonEval: A Unified Carbon Emission Estimation Framework in Large-Scale AI Models [16.93272879722972]
OpenCarbonEval is a framework for integrating large-scale models across diverse modalities to predict carbon emissions.
We show that OpenCarbonEval achieves superior performance in predicting carbon emissions for both visual models and language models.
arXiv Detail & Related papers (2024-05-21T14:50:20Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - Curb Your Carbon Emissions: Benchmarking Carbon Emissions in Machine
Translation [0.0]
We study the carbon efficiency and look for alternatives to reduce the overall environmental impact of training models.
In our work, we assess the performance of models for machine translation, across multiple language pairs.
We examine the various components of these models to analyze aspects of our pipeline that can be optimized to reduce these carbon emissions.
arXiv Detail & Related papers (2021-09-26T12:30:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.