論文の概要: Adaptive Robotic Arm Control with a Spiking Recurrent Neural Network on a Digital Accelerator
- arxiv url: http://arxiv.org/abs/2405.12849v2
- Date: Sun, 2 Jun 2024 18:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 14:29:15.557256
- Title: Adaptive Robotic Arm Control with a Spiking Recurrent Neural Network on a Digital Accelerator
- Title(参考訳): ディジタル加速器を用いたスパイキングリカレントニューラルネットワークによる適応型ロボットアーム制御
- Authors: Alejandro Linares-Barranco, Luciano Prono, Robert Lengenstein, Giacomo Indiveri, Charlotte Frenkel,
- Abstract要約: 本稿では,システムの概要と,Pynq ZUプラットフォーム上で使用するPythonフレームワークについて述べる。
シミュレーションされた精度は,毎秒380万イベントのピーク性能で維持されていることを示す。
- 参考スコア(独自算出の注目度): 41.60361484397962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of artificial intelligence, neural network simulations of biological neuron models are being explored to reduce the footprint of learning and inference in resource-constrained task scenarios. A mainstream type of such networks are spiking neural networks (SNNs) based on simplified Integrate and Fire models for which several hardware accelerators have emerged. Among them, the ReckOn chip was introduced as a recurrent SNN allowing for both online training and execution of tasks based on arbitrary sensory modalities, demonstrated for vision, audition, and navigation. As a fully digital and open-source chip, we adapted ReckOn to be implemented on a Xilinx Multiprocessor System on Chip system (MPSoC), facilitating its deployment in embedded systems and increasing the setup flexibility. We present an overview of the system, and a Python framework to use it on a Pynq ZU platform. We validate the architecture and implementation in the new scenario of robotic arm control, and show how the simulated accuracy is preserved with a peak performance of 3.8M events processed per second.
- Abstract(参考訳): 人工知能の台頭に伴い、リソース制約されたタスクシナリオにおける学習と推論のフットプリントを減らすために、生物学的ニューロンモデルのニューラルネットワークシミュレーションが研究されている。
このようなネットワークの主流は、いくつかのハードウェアアクセラレータが出現した、単純化されたIntegrateとFireモデルに基づくニューラルネットワーク(SNN)をスパイクしている。
その中でも、ReckOnチップは、視覚、オーディション、ナビゲーションのためにデモされた任意の感覚のモダリティに基づいたタスクのオンライントレーニングと実行を可能にする、反復SNNとして導入された。
完全ディジタルかつオープンソースなチップとして、我々は、チップシステム(MPSoC)上のXilinx Multiprocessor SystemにReckOnを実装し、組み込みシステムへのデプロイを容易にし、セットアップの柔軟性を高めました。
本稿では,システムの概要と,Pynq ZUプラットフォーム上で使用するPythonフレームワークについて述べる。
ロボットアーム制御の新しいシナリオにおけるアーキテクチャと実装を検証し、シミュレーションされた精度を1秒あたり380万イベントのピーク性能で保持する方法を示す。
関連論文リスト
- Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks(SNN)は、小さくて低消費電力なハードウェアフットプリントによるエネルギー効率の向上を提供する。
本稿では、JAXで設計された新しい軽量SNNシミュレーションおよび最適化ライブラリSpyxを紹介する。
論文 参考訳(メタデータ) (2024-02-29T09:46:44Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
スパイキングニューラルネットワーク(SNN)は、高エネルギー効率のニューロモルフィックチップに脳にインスパイアされたインテリジェンスを実現することを目的としている。
我々は、ニューロモルフィックデータセットの事前処理、深層SNNの構築、パラメータの最適化、およびニューロモルフィックチップへのSNNのデプロイのためのフルスタックツールキットをコントリビュートする。
論文 参考訳(メタデータ) (2023-10-25T13:15:17Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - Evolving Connectivity for Recurrent Spiking Neural Networks [8.80300633999542]
リカレントニューラルネットワーク(RSNN)は、人工知能の進歩に大きな可能性を秘めている。
本稿では、RSNNをトレーニングするための推論のみの手法である、進化的接続性(EC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-28T07:08:25Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - PulseDL-II: A System-on-Chip Neural Network Accelerator for Timing and
Energy Extraction of Nuclear Detector Signals [3.307097167756987]
本稿では,深層学習を持つパルスからイベント特徴(時間,エネルギーなど)を抽出するためのシステムオンチップ(SoC)であるPulseDL-IIを紹介する。
提案システムは, 47.4dBの信号対雑音比(SNR)において, オンラインニューラルネットワークを用いた60psの時間分解能と0.40%のエネルギー分解能を得た。
論文 参考訳(メタデータ) (2022-09-02T08:52:21Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
モデル予測制御パイプライン内の動的モデルとして,大規模で複雑なニューラルネットワークアーキテクチャを効率的に統合するフレームワークであるReal-time Neural MPCを提案する。
ニューラルネットワークを使わずに、最先端のMPCアプローチと比較して、位置追跡誤差を最大82%削減することで、実世界の問題に対する我々のフレームワークの実現可能性を示す。
論文 参考訳(メタデータ) (2022-03-15T09:38:15Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。