A Novel Feature Map Enhancement Technique Integrating Residual CNN and Transformer for Alzheimer Diseases Diagnosis
- URL: http://arxiv.org/abs/2405.12986v2
- Date: Sat, 25 May 2024 05:47:22 GMT
- Title: A Novel Feature Map Enhancement Technique Integrating Residual CNN and Transformer for Alzheimer Diseases Diagnosis
- Authors: Saddam Hussain Khan,
- Abstract summary: Alzheimer diseases (ADs) involves cognitive decline and abnormal brain protein accumulation, necessitating timely diagnosis for effective treatment.
CAD systems leveraging deep learning advancements have demonstrated success in AD detection but pose computational intricacies and the dataset minor contrast, structural, and texture variations.
This approach integrates three distinct elements: a novel CNN Meet Transformer (HSCMT), customized residual learning CNN, and a new Feature Map Enhancement (FME) strategy to learn diverse morphological, contrast, and texture variations of ADs.
- Score: 1.2432046687586285
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Alzheimer diseases (ADs) involves cognitive decline and abnormal brain protein accumulation, necessitating timely diagnosis for effective treatment. Therefore, CAD systems leveraging deep learning advancements have demonstrated success in AD detection but pose computational intricacies and the dataset minor contrast, structural, and texture variations. In this regard, a novel hybrid FME-Residual-HSCMT technique is introduced, comprised of residual CNN and Transformer concepts to capture global and local fine-grained AD analysis in MRI. This approach integrates three distinct elements: a novel CNN Meet Transformer (HSCMT), customized residual learning CNN, and a new Feature Map Enhancement (FME) strategy to learn diverse morphological, contrast, and texture variations of ADs. The proposed HSCMT at the initial stage utilizes stem convolution blocks that are integrated with CMT blocks followed by systematic homogenous and structural (HS) operations. The customized CMT block encapsulates each element with global contextual interactions through multi-head attention and facilitates computational efficiency through lightweight. Moreover, inverse residual and stem CNN in customized CMT enables effective extraction of local texture information and handling vanishing gradients. Furthermore, in the FME strategy, residual CNN blocks utilize TL-based generated auxiliary and are combined with the proposed HSCMT channels at the target level to achieve diverse enriched feature space. Finally, diverse enhanced channels are fed into a novel spatial attention mechanism for optimal pixel selection to reduce redundancy and discriminate minor contrast and texture inter-class variation. The proposed achieves an F1-score (98.55%), an accuracy of 98.42% and a sensitivity of 98.50%, a precision of 98.60% on the standard Kaggle dataset, and demonstrates outperformance existing ViTs and CNNs methods.
Related papers
- RS-FME-SwinT: A Novel Feature Map Enhancement Framework Integrating Customized SwinT with Residual and Spatial CNN for Monkeypox Diagnosis [1.0523436939538895]
Monkeypox (MPox) has emerged as a significant global concern, with cases steadily increasing daily.
Deep learning offers an automated solution; however, the datasets include data scarcity, texture, contrast, inter-intra class variability, and similarities with other skin infectious diseases.
A novel hybrid approach is proposed that integrates the learning capacity of Residual Learning and Spatial Exploitation Convolutional Neural Network (CNN) with a customized Swin Transformer (RS-FME-SwinT) to capture MPox diagnosis.
arXiv Detail & Related papers (2024-10-02T03:57:57Z) - CNN-Transformer Rectified Collaborative Learning for Medical Image Segmentation [60.08541107831459]
This paper proposes a CNN-Transformer rectified collaborative learning framework to learn stronger CNN-based and Transformer-based models for medical image segmentation.
Specifically, we propose a rectified logit-wise collaborative learning (RLCL) strategy which introduces the ground truth to adaptively select and rectify the wrong regions in student soft labels.
We also propose a class-aware feature-wise collaborative learning (CFCL) strategy to achieve effective knowledge transfer between CNN-based and Transformer-based models in the feature space.
arXiv Detail & Related papers (2024-08-25T01:27:35Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional
Network for Retinal OCT Fluid Segmentation [3.57686754209902]
Quantification of retinal fluids is necessary for OCT-guided treatment management.
New convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation.
Model benefits from hierarchical representation learning of textural, contextual, and edge features.
arXiv Detail & Related papers (2022-09-26T07:18:00Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
White matter parcellation classifies tractography streamlines into clusters or anatomically meaningful tracts.
Most parcellation methods focus on the deep white matter (DWM), whereas fewer methods address the superficial white matter (SWM) due to its complexity.
We propose a novel two-stage deep-learning-based framework, Superficial White Matter Analysis (SupWMA), that performs an efficient parcellation of 198 SWM clusters from whole-brain tractography.
arXiv Detail & Related papers (2022-07-18T23:07:53Z) - ARPM-net: A novel CNN-based adversarial method with Markov Random Field
enhancement for prostate and organs at risk segmentation in pelvic CT images [10.011212599949541]
The research is to develop a novel CNN-based adversarial deep learning method to improve and expedite the multi-organ semantic segmentation of CT images.
The proposed adversarial multi-residual multi-scale pooling Markov Random Field (MRF) enhanced network (ARPM-net) implements an adversarial training scheme.
The accuracy of modeled contours was measured with the Dice similarity coefficient (DSC), Average Hausdorff Distance (AHD), Average Surface Hausdorff Distance (ASHD), and relative Volume Difference (VD) using clinical contours as references.
arXiv Detail & Related papers (2020-08-11T02:40:53Z) - Learning Interpretable Microscopic Features of Tumor by Multi-task
Adversarial CNNs To Improve Generalization [1.7371375427784381]
Existing CNN models act as black boxes, not ensuring to the physicians that important diagnostic features are used by the model.
Here we show that our architecture, by learning end-to-end an uncertainty-based weighting combination of multi-task and adversarial losses, is encouraged to focus on pathology features.
Our results on breast lymph node tissue show significantly improved generalization in the detection of tumorous tissue, with best average AUC 0.89 (0.01) against the baseline AUC 0.86 (0.005)
arXiv Detail & Related papers (2020-08-04T12:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.