RS-FME-SwinT: A Novel Feature Map Enhancement Framework Integrating Customized SwinT with Residual and Spatial CNN for Monkeypox Diagnosis
- URL: http://arxiv.org/abs/2410.01216v1
- Date: Wed, 2 Oct 2024 03:57:57 GMT
- Title: RS-FME-SwinT: A Novel Feature Map Enhancement Framework Integrating Customized SwinT with Residual and Spatial CNN for Monkeypox Diagnosis
- Authors: Saddam Hussain Khan, Rashid Iqbal,
- Abstract summary: Monkeypox (MPox) has emerged as a significant global concern, with cases steadily increasing daily.
Deep learning offers an automated solution; however, the datasets include data scarcity, texture, contrast, inter-intra class variability, and similarities with other skin infectious diseases.
A novel hybrid approach is proposed that integrates the learning capacity of Residual Learning and Spatial Exploitation Convolutional Neural Network (CNN) with a customized Swin Transformer (RS-FME-SwinT) to capture MPox diagnosis.
- Score: 1.0523436939538895
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monkeypox (MPox) has emerged as a significant global concern, with cases steadily increasing daily. Conventional detection methods, including polymerase chain reaction (PCR) and manual examination, exhibit challenges of low sensitivity, high cost, and substantial workload. Therefore, deep learning offers an automated solution; however, the datasets include data scarcity, texture, contrast, inter-intra class variability, and similarities with other skin infectious diseases. In this regard, a novel hybrid approach is proposed that integrates the learning capacity of Residual Learning and Spatial Exploitation Convolutional Neural Network (CNN) with a customized Swin Transformer (RS-FME-SwinT) to capture multi-scale global and local correlated features for MPox diagnosis. The proposed RS-FME-SwinT technique employs a transfer learning-based feature map enhancement (FME) technique, integrating the customized SwinT for global information capture, residual blocks for texture extraction, and spatial blocks for local contrast variations. Moreover, incorporating new inverse residual blocks within the proposed SwinT effectively captures local patterns and mitigates vanishing gradients. The proposed RS-FME-SwinT has strong learning potential of diverse features that systematically reduce intra-class MPox variation and enable precise discrimination from other skin diseases. Finally, the proposed RS-FME-SwinT is a holdout cross-validated on a diverse MPox dataset and achieved outperformance on state-of-the-art CNNs and ViTs. The proposed RS-FME-SwinT demonstrates commendable results of an accuracy of 97.80%, sensitivity of 96.82%, precision of 98.06%, and an F-score of 97.44% in MPox detection. The RS-FME-SwinT could be a valuable tool for healthcare practitioners, enabling prompt and accurate MPox diagnosis and contributing significantly to mitigation efforts.
Related papers
- Diff-CXR: Report-to-CXR generation through a disease-knowledge enhanced diffusion model [4.507437953126754]
We propose a disease-knowledge enhanced Diffusion-based TTI learning framework, named Diff-CXR, for medical report-to-CXR generation.
Experimentally, our Diff-CXR outperforms previous SOTA medical TTI methods by 33.4% / 8.0% and 23.8% / 56.4% in the FID and mAUC score on MIMIC-CXR and IU-Xray.
arXiv Detail & Related papers (2024-10-26T12:38:12Z) - A Novel Feature Map Enhancement Technique Integrating Residual CNN and Transformer for Alzheimer Diseases Diagnosis [1.2432046687586285]
Alzheimer diseases (ADs) involves cognitive decline and abnormal brain protein accumulation, necessitating timely diagnosis for effective treatment.
CAD systems leveraging deep learning advancements have demonstrated success in AD detection but pose computational intricacies and the dataset minor contrast, structural, and texture variations.
This approach integrates three distinct elements: a novel CNN Meet Transformer (HSCMT), customized residual learning CNN, and a new Feature Map Enhancement (FME) strategy to learn diverse morphological, contrast, and texture variations of ADs.
arXiv Detail & Related papers (2024-03-30T10:17:13Z) - Enhancing Open-World Bacterial Raman Spectra Identification by Feature
Regularization for Improved Resilience against Unknown Classes [0.0]
Traditional closed-set classification approaches assume that all test samples belong to one of the known pathogens.
We demonstrate that the current state-of-the-art Neural Networks identifying pathogens through Raman spectra are vulnerable to unknown inputs.
We develop a novel ensemble of ResNet architectures combined with the attention mechanism which outperforms existing closed-world methods.
arXiv Detail & Related papers (2023-10-19T17:19:47Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - Improving COVID-19 CT Classification of CNNs by Learning
Parameter-Efficient Representation [31.51725965329019]
Deep learning methods have been proposed to assist clinicians in automatic COVID-19 diagnosis based on computed tomography imaging.
DenseNet121 achieves an average test accuracy of 99.44% in three trials for three-category classification, including normal, non-COVID-19 pneumonia, and COVID-19 pneumonia.
arXiv Detail & Related papers (2022-08-09T12:24:53Z) - Identification of Autism spectrum disorder based on a novel feature
selection method and Variational Autoencoder [7.0876609220947655]
Noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD)
This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI.
arXiv Detail & Related papers (2022-04-07T08:50:48Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.