A graph-structured distance for heterogeneous datasets with meta variables
- URL: http://arxiv.org/abs/2405.13073v1
- Date: Mon, 20 May 2024 23:11:03 GMT
- Title: A graph-structured distance for heterogeneous datasets with meta variables
- Authors: Edward Hallé-Hannan, Charles Audet, Youssef Diouane, Sébastien Le Digabel, Paul Saves,
- Abstract summary: Heterogeneous datasets emerge in various machine learning or optimization applications.
The first main contribution is a modeling graph-structured framework that generalizes state-of-the-art hierarchical, tree-structured, or variable-size frameworks.
The second main contribution is the graph-structured distance that compares extended points with any combination of included and excluded variables.
- Score: 1.677718351174347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heterogeneous datasets emerge in various machine learning or optimization applications that feature different data sources, various data types and complex relationships between variables. In practice, heterogeneous datasets are often partitioned into smaller well-behaved ones that are easier to process. However, some applications involve expensive-to-generate or limited size datasets, which motivates methods based on the whole dataset. The first main contribution of this work is a modeling graph-structured framework that generalizes state-of-the-art hierarchical, tree-structured, or variable-size frameworks. This framework models domains that involve heterogeneous datasets in which variables may be continuous, integer, or categorical, with some identified as meta if their values determine the inclusion/exclusion or affect the bounds of other so-called decreed variables. Excluded variables are introduced to manage variables that are either included or excluded depending on the given points. The second main contribution is the graph-structured distance that compares extended points with any combination of included and excluded variables: any pair of points can be compared, allowing to work directly in heterogeneous datasets with meta variables. The contributions are illustrated with some regression experiments, in which the performance of a multilayer perceptron with respect to its hyperparameters is modeled with inverse distance weighting and $K$-nearest neighbors models.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - CAVIAR: Categorical-Variable Embeddings for Accurate and Robust Inference [0.2209921757303168]
Social science research often hinges on the relationship between categorical variables and outcomes.
We introduce CAVIAR, a novel method for embedding categorical variables that assume values in a high-dimensional ambient space but are sampled from an underlying manifold.
arXiv Detail & Related papers (2024-04-07T14:47:07Z) - Mixed-Query Transformer: A Unified Image Segmentation Architecture [57.32212654642384]
Existing unified image segmentation models either employ a unified architecture across multiple tasks but use separate weights tailored to each dataset, or apply a single set of weights to multiple datasets but are limited to a single task.
We introduce the Mixed-Query Transformer (MQ-Former), a unified architecture for multi-task and multi-dataset image segmentation using a single set of weights.
arXiv Detail & Related papers (2024-04-06T01:54:17Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Latent Variable Multi-output Gaussian Processes for Hierarchical
Datasets [0.8057006406834466]
Multi-output Gaussian processes (MOGPs) have been introduced to deal with multiple tasks by exploiting the correlations between different outputs.
This paper proposes an extension of MOGPs for hierarchical datasets.
arXiv Detail & Related papers (2023-08-31T15:52:35Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables.
Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
arXiv Detail & Related papers (2023-06-30T01:48:11Z) - HGFormer: Hierarchical Grouping Transformer for Domain Generalized
Semantic Segmentation [113.6560373226501]
This work studies semantic segmentation under the domain generalization setting.
We propose a novel hierarchical grouping transformer (HGFormer) to explicitly group pixels to form part-level masks and then whole-level masks.
Experiments show that HGFormer yields more robust semantic segmentation results than per-pixel classification methods and flat grouping transformers.
arXiv Detail & Related papers (2023-05-22T13:33:41Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - High-Dimensional Undirected Graphical Models for Arbitrary Mixed Data [2.2871867623460207]
In many applications data span variables of different types, whose principled joint analysis is nontrivial.
Recent advances have shown how the binary-continuous case can be tackled, but the general mixed variable type regime remains challenging.
We propose flexible and scalable methodology for data with variables of entirely general mixed type.
arXiv Detail & Related papers (2022-11-21T18:21:31Z) - Multi-Domain Long-Tailed Learning by Augmenting Disentangled
Representations [80.76164484820818]
There is an inescapable long-tailed class-imbalance issue in many real-world classification problems.
We study this multi-domain long-tailed learning problem and aim to produce a model that generalizes well across all classes and domains.
Built upon a proposed selective balanced sampling strategy, TALLY achieves this by mixing the semantic representation of one example with the domain-associated nuisances of another.
arXiv Detail & Related papers (2022-10-25T21:54:26Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Inference of Multiscale Gaussian Graphical Model [0.0]
We propose a new method allowing to simultaneously infer a hierarchical clustering structure and the graphs describing the structure of independence at each level of the hierarchy.
Results on real and synthetic data are presented.
arXiv Detail & Related papers (2022-02-11T17:11:20Z) - Hierarchical Variational Memory for Few-shot Learning Across Domains [120.87679627651153]
We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory.
The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand.
We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model.
arXiv Detail & Related papers (2021-12-15T15:01:29Z) - Linear Discriminant Analysis with High-dimensional Mixed Variables [10.774094462083843]
This paper develops a novel approach for classifying high-dimensional observations with mixed variables.
We overcome the challenge of having to split data into exponentially many cells.
Results on the estimation accuracy and the misclassification rates are established.
arXiv Detail & Related papers (2021-12-14T03:57:56Z) - For high-dimensional hierarchical models, consider exchangeability of
effects across covariates instead of across datasets [18.74167116981788]
We show that standard practice exhibits poor statistical performance when the number of covariates exceeds the number of datasets.
In statistical genetics, we might regress dozens of traits (defining datasets) for thousands of individuals (responses) on up to millions of genetic variants.
We propose a hierarchical model expressing our alternative perspective.
arXiv Detail & Related papers (2021-07-13T23:23:06Z) - Multi-Modal Prototype Learning for Interpretable Multivariable Time
Series Classification [0.0]
Multivariable time series classification problems are increasing in prevalence and complexity.
Deep learning methods are an effective tool for these problems, but they often lack interpretability.
We propose a novel modular prototype learning framework for multivariable time series classification.
arXiv Detail & Related papers (2021-06-17T16:32:47Z) - Generalized Matrix Factorization: efficient algorithms for fitting
generalized linear latent variable models to large data arrays [62.997667081978825]
Generalized Linear Latent Variable models (GLLVMs) generalize such factor models to non-Gaussian responses.
Current algorithms for estimating model parameters in GLLVMs require intensive computation and do not scale to large datasets.
We propose a new approach for fitting GLLVMs to high-dimensional datasets, based on approximating the model using penalized quasi-likelihood.
arXiv Detail & Related papers (2020-10-06T04:28:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.