FedASTA: Federated adaptive spatial-temporal attention for traffic flow prediction
- URL: http://arxiv.org/abs/2405.13090v2
- Date: Mon, 04 Nov 2024 02:10:00 GMT
- Title: FedASTA: Federated adaptive spatial-temporal attention for traffic flow prediction
- Authors: Kaiyuan Li, Yihan Zhang, Huandong Wang, Yan Zhuo, Xinlei Chen,
- Abstract summary: Mobile devices and the Internet of Things (IoT) devices nowadays generate a large amount of heterogeneous spatial-temporal data.
It remains a challenging problem to model the spatial-temporal dynamics under privacy concern.
We propose a novel Federated Adaptive spatial-temporal Attention (FedASTA) framework to model the dynamic spatial-temporal relations.
- Score: 30.346763969306398
- License:
- Abstract: Mobile devices and the Internet of Things (IoT) devices nowadays generate a large amount of heterogeneous spatial-temporal data. It remains a challenging problem to model the spatial-temporal dynamics under privacy concern. Federated learning (FL) has been proposed as a framework to enable model training across distributed devices without sharing original data which reduce privacy concern. Personalized federated learning (PFL) methods further address data heterogenous problem. However, these methods don't consider natural spatial relations among nodes. For the sake of modeling spatial relations, Graph Neural Netowork (GNN) based FL approach have been proposed. But dynamic spatial-temporal relations among edge nodes are not taken into account. Several approaches model spatial-temporal dynamics in a centralized environment, while less effort has been made under federated setting. To overcome these challeges, we propose a novel Federated Adaptive Spatial-Temporal Attention (FedASTA) framework to model the dynamic spatial-temporal relations. On the client node, FedASTA extracts temporal relations and trend patterns from the decomposed terms of original time series. Then, on the server node, FedASTA utilize trend patterns from clients to construct adaptive temporal-spatial aware graph which captures dynamic correlation between clients. Besides, we design a masked spatial attention module with both static graph and constructed adaptive graph to model spatial dependencies among clients. Extensive experiments on five real-world public traffic flow datasets demonstrate that our method achieves state-of-art performance in federated scenario. In addition, the experiments made in centralized setting show the effectiveness of our novel adaptive graph construction approach compared with other popular dynamic spatial-temporal aware methods.
Related papers
- Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Dynamic Graph Convolutional Network with Attention Fusion for Traffic
Flow Prediction [10.3426659705376]
We propose a novel dynamic graph convolution network with attention fusion to model synchronous spatial-temporal correlations.
We conduct extensive experiments in four real-world traffic datasets to demonstrate that our method surpasses state-of-the-art performance compared to 18 baseline methods.
arXiv Detail & Related papers (2023-02-24T12:21:30Z) - Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow
Forecasting [6.867331860819595]
Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns.
Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately.
We propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions.
arXiv Detail & Related papers (2022-07-09T19:21:00Z) - Unraveled Multilevel Transformation Networks for Predicting
Sparsely-Observed Spatiotemporal Dynamics [12.627823168264209]
We propose a model that learns to predict unknown dynamics using data from sparsely-distributed data sites.
We demonstrate the advantage of our approach using both synthetic and real-world climate data.
arXiv Detail & Related papers (2022-03-16T14:44:05Z) - STJLA: A Multi-Context Aware Spatio-Temporal Joint Linear Attention
Network for Traffic Forecasting [7.232141271583618]
We propose a novel deep learning model for traffic forecasting named inefficient-Context Spatio-Temporal Joint Linear Attention (SSTLA)
SSTLA applies linear attention to a joint graph to capture global dependence between alltemporal- nodes efficiently.
Experiments on two real-world traffic datasets, England and Temporal7, demonstrate that our STJLA can achieve 9.83% and 3.08% 3.08% accuracy in MAE measure over state-of-the-art baselines.
arXiv Detail & Related papers (2021-12-04T06:39:18Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.