論文の概要: Non-autoregressive real-time Accent Conversion model with voice cloning
- arxiv url: http://arxiv.org/abs/2405.13162v1
- Date: Tue, 21 May 2024 19:07:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:13:10.844767
- Title: Non-autoregressive real-time Accent Conversion model with voice cloning
- Title(参考訳): 音声クローンを用いた非自己回帰リアルタイムアクセント変換モデル
- Authors: Vladimir Nechaev, Sergey Kosyakov,
- Abstract要約: 我々は音声クローンを用いたリアルタイムアクセント変換のための非自己回帰モデルを開発した。
このモデルは入力L2音声に基づいて最小レイテンシでネイティブなL1音声を生成する。
このモデルは、話者の声の音色、性別、アクセントをリアルタイムで保存し、クローンし、変更することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Currently, the development of Foreign Accent Conversion (FAC) models utilizes deep neural network architectures, as well as ensembles of neural networks for speech recognition and speech generation. The use of these models is limited by architectural features, which does not allow flexible changes in the timbre of the generated speech and requires the accumulation of context, leading to increased delays in generation and makes these systems unsuitable for use in real-time multi-user communication scenarios. We have developed the non-autoregressive model for real-time accent conversion with voice cloning. The model generates native-sounding L1 speech with minimal latency based on input L2 accented speech. The model consists of interconnected modules for extracting accent, gender, and speaker embeddings, converting speech, generating spectrograms, and decoding the resulting spectrogram into an audio signal. The model has the ability to save, clone and change the timbre, gender and accent of the speaker's voice in real time. The results of the objective assessment show that the model improves speech quality, leading to enhanced recognition performance in existing ASR systems. The results of subjective tests show that the proposed accent and gender encoder improves the generation quality. The developed model demonstrates high-quality low-latency accent conversion, voice cloning, and speech enhancement capabilities, making it suitable for real-time multi-user communication scenarios.
- Abstract(参考訳): 現在、外部アクセント変換(FAC)モデルの開発には、ディープニューラルネットワークアーキテクチャと、音声認識と音声生成のためのニューラルネットワークのアンサンブルが使用されている。
これらのモデルの使用は、生成した音声の音色を柔軟に変化させることができず、文脈の蓄積が要求されるアーキテクチャ的特徴によって制限され、生成の遅延が増大し、リアルタイムなマルチユーザ通信シナリオでの使用には適さない。
我々は音声クローンを用いたリアルタイムアクセント変換のための非自己回帰モデルを開発した。
このモデルは、入力L2アクセント音声に基づいて、最小レイテンシでネイティブなL1音声を生成する。
このモデルは、アクセント、性別、話者埋め込みを抽出し、音声に変換し、スペクトログラムを生成し、その結果のスペクトログラムをオーディオ信号に復号するための相互接続モジュールで構成されている。
このモデルは、話者の声の音色、性別、アクセントをリアルタイムで保存し、クローンし、変更することができる。
その結果,既存の音声認識システムでは音声認識性能が向上し,音声認識性能が向上することが示唆された。
主観的テストの結果,提案したアクセントとジェンダーエンコーダが生成品質を向上させることが示された。
開発したモデルは,高品質な低遅延アクセント変換,音声クローニング,音声強調機能を実現し,リアルタイムマルチユーザ通信のシナリオに適合する。
関連論文リスト
- CoLM-DSR: Leveraging Neural Codec Language Modeling for Multi-Modal Dysarthric Speech Reconstruction [61.067153685104394]
変形性音声再建(DSR)は、変形性音声を正常な音声に変換することを目的としている。
話者の類似度は低く、プロソディの自然度は低い。
本稿では、ニューラルネットワークモデリングを利用して再構成結果を改善するマルチモーダルDSRモデルを提案する。
論文 参考訳(メタデータ) (2024-06-12T15:42:21Z) - SpeechAlign: Aligning Speech Generation to Human Preferences [51.684183257809075]
本稿では,言語モデルと人間の嗜好を一致させる反復的自己改善戦略であるSpeechAlignを紹介する。
我々は、SpeechAlignが分散ギャップを埋め、言語モデルの継続的自己改善を促進することができることを示す。
論文 参考訳(メタデータ) (2024-04-08T15:21:17Z) - Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
本稿では,複数の改良を加えた多言語音声認識モデルを提案する。
我々は、6つの異なる言語に対する音声視覚訓練データの量を増やし、重複しない多言語データセットの自動書き起こしを生成する。
提案モデルでは, LRS3データセット上での新たな最先端性能を実現し, WERは0.8%に達した。
論文 参考訳(メタデータ) (2024-03-14T01:16:32Z) - SpeechGPT-Gen: Scaling Chain-of-Information Speech Generation [56.913182262166316]
CoIG(Chain-of-Information Generation)は、大規模音声生成において意味情報と知覚情報を分離する手法である。
SpeechGPT-Genはセマンティックおよび知覚情報モデリングにおいて効率的である。
ゼロショット音声変換、ゼロショット音声変換、音声音声対話に優れる。
論文 参考訳(メタデータ) (2024-01-24T15:25:01Z) - Audio-Visual Speech Enhancement with Score-Based Generative Models [22.559617939136505]
本稿では,スコアベース生成モデルを利用した音声・視覚音声強調システムを提案する。
我々は,リップリーディングを微調整した自己超視的学習モデルから得られる音声-視覚的埋め込みを利用する。
実験により,提案した音声・視覚音声強調システムにより,音声の質が向上することが確認された。
論文 参考訳(メタデータ) (2023-06-02T10:43:42Z) - NaturalSpeech 2: Latent Diffusion Models are Natural and Zero-Shot
Speech and Singing Synthesizers [90.83782600932567]
残差ベクトル化器を備えたニューラルオーディオ予測器を応用して量子化潜在ベクトルを得るTSシステムであるNaturalSpeech 2を開発した。
本研究では,NaturalSpeech 2を44K時間の音声・歌唱データを持つ大規模データセットに拡張し,未知話者の音声品質を評価する。
NaturalSpeech 2は、0ショット設定で、韻律/音節の類似性、合成、音声品質の点で、従来のTSシステムよりはるかに優れている。
論文 参考訳(メタデータ) (2023-04-18T16:31:59Z) - Disentangled Feature Learning for Real-Time Neural Speech Coding [24.751813940000993]
本稿では,視覚的なエンドツーエンド学習の代わりに,リアルタイムなニューラル音声符号化のための非絡み合った特徴を学習することを提案する。
学習された不整合特徴は、現代の自己教師付き音声表現学習モデルを用いて、任意の音声変換において同等の性能を示す。
論文 参考訳(メタデータ) (2022-11-22T02:50:12Z) - Beyond Voice Identity Conversion: Manipulating Voice Attributes by
Adversarial Learning of Structured Disentangled Representations [12.139222986297263]
本稿では,音声属性の操作を可能にするニューラルアーキテクチャを提案する。
複数の自動エンコーダを用いて、理想主義的に独立した言語的および言語外表現の集合として音声を符号化する、構造化ニューラルネットワークが提案されている。
提案アーキテクチャは、リップ同期アプリケーションを可能にする変換中に元の音声タイミングが保存されるように時間同期される。
論文 参考訳(メタデータ) (2021-07-26T17:40:43Z) - An Adaptive Learning based Generative Adversarial Network for One-To-One
Voice Conversion [9.703390665821463]
本稿では,効率の良い1対1話者VCのための適応学習型GANモデルであるALGAN-VCを提案する。
このモデルは、Voice Conversion Challenge (VCC) 2016、2018、2020データセット、および自己準備のスピーチデータセットでテストされています。
生成音声サンプルの主観的および客観的評価は,提案モデルが音声変換タスクをエレガントに実行していることを示した。
論文 参考訳(メタデータ) (2021-04-25T13:44:32Z) - Any-to-Many Voice Conversion with Location-Relative Sequence-to-Sequence
Modeling [61.351967629600594]
本稿では,非並列音声変換手法である非並列音声変換法(seq2seq)を提案する。
本手法では,ボトルネック特徴抽出器(BNE)とセック2セック合成モジュールを組み合わせる。
主観的および主観的評価は,提案手法が自然性と話者類似性の両方において優れた音声変換性能を有することを示す。
論文 参考訳(メタデータ) (2020-09-06T13:01:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。