Global-Local Detail Guided Transformer for Sea Ice Recognition in Optical Remote Sensing Images
- URL: http://arxiv.org/abs/2405.13197v1
- Date: Tue, 21 May 2024 21:02:20 GMT
- Title: Global-Local Detail Guided Transformer for Sea Ice Recognition in Optical Remote Sensing Images
- Authors: Zhanchao Huang, Wenjun Hong, Hua Su,
- Abstract summary: A Global-Local Detail Guided Transformer (GDGT) method is proposed for sea ice recognition in optical remote sensing images.
In GDGT, a global-local feature fusiont mechanism is designed to fuse global structural correlation features and local spatial detail features.
A detail-guided decoder is developed to retain more high-resolution detail information during feature reconstruction for improving the performance of sea ice recognition.
- Score: 4.540236408836131
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recognition of sea ice is of great significance for reflecting climate change and ensuring the safety of ship navigation. Recently, many deep learning based methods have been proposed and applied to segment and recognize sea ice regions. However, the diverse scales of sea ice areas, the zigzag and fine edge contours, and the difficulty in distinguishing different types of sea ice pose challenges to existing sea ice recognition models. In this paper, a Global-Local Detail Guided Transformer (GDGT) method is proposed for sea ice recognition in optical remote sensing images. In GDGT, a global-local feature fusiont mechanism is designed to fuse global structural correlation features and local spatial detail features. Furthermore, a detail-guided decoder is developed to retain more high-resolution detail information during feature reconstruction for improving the performance of sea ice recognition. Experiments on the produced sea ice dataset demonstrated the effectiveness and advancement of GDGT.
Related papers
- Multi-Sensor Deep Learning for Glacier Mapping [0.0]
Glaciers outside the ice sheets play a crucial role in our society by influencing sea-level rise, water resource management, natural hazards, biodiversity, and tourism.
Satellite-based glacier mapping applications have historically mainly relied on manual and semi-automatic detection methods.
This chapter reviews how combining multi-sensor remote sensing data and deep learning allows us to better delineate glaciers and detect their temporal changes.
arXiv Detail & Related papers (2024-09-18T14:51:36Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Region-level labels in ice charts can produce pixel-level segmentation for Sea Ice types [12.480532138980834]
We present a weakly supervised learning method for sea ice classification with lower-resolution labels from expert-annotated ice charts.
Our method outperforms the fully supervised U-Net benchmark in both mapping resolution and class-wise accuracy.
arXiv Detail & Related papers (2024-05-16T21:54:33Z) - OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning [50.365198230613956]
Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
arXiv Detail & Related papers (2024-05-12T09:32:40Z) - Boundary Aware U-Net for Glacier Segmentation [1.1715858161748574]
We propose a modified version of the U-Net for large-scale, spatially non-overlapping, clean glacial ice, and debris-covered glacial ice segmentation.
We introduce a novel self-learning boundary-aware loss to improve debris-covered glacial ice segmentation performance.
We conclude that red, shortwave infrared, and near-infrared bands have the highest contribution toward debris-covered glacial ice segmentation from Landsat 7 images.
arXiv Detail & Related papers (2023-01-26T22:58:23Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - GlacierNet2: A Hybrid Multi-Model Learning Architecture for Alpine
Glacier Mapping [5.953569982292301]
Thematic and quantitative information regarding glacier geometry is fundamental for understanding climate forcing and the sensitivity of glaciers to climate change.
accurately mapping debris-cover glaciers (DCGs) is notoriously difficult based upon the use of spectral information and conventional machine-learning techniques.
The objective of this research is to improve upon an earlier proposed deep-learning-based approach, GlacierNet, which was developed to exploit a convolutional neural-network segmentation model to accurately outline regional DCG ablation zones.
arXiv Detail & Related papers (2022-04-06T14:39:34Z) - Simulating surface height and terminus position for marine outlet
glaciers using a level set method with data assimilation [0.0]
We implement a data assimilation framework for integrating ice surface and terminus position observations into a numerical ice-flow model.
The model is also applied to simulate Helheim Glacier, a major tidewater-terminating glacier of the Greenland Ice Sheet.
arXiv Detail & Related papers (2022-01-28T16:45:37Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya [54.12023102155757]
Glacier mapping is key to ecological monitoring in the hkh region.
Climate change poses a risk to individuals whose livelihoods depend on the health of glacier ecosystems.
We present a machine learning based approach to support ecological monitoring, with a focus on glaciers.
arXiv Detail & Related papers (2020-12-09T12:48:06Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.