論文の概要: Quantum Software Ecosystem Design
- arxiv url: http://arxiv.org/abs/2405.13244v1
- Date: Tue, 21 May 2024 23:11:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 01:43:54.139553
- Title: Quantum Software Ecosystem Design
- Title(参考訳): 量子ソフトウェアエコシステム設計
- Authors: Achim Basermann, Michael Epping, Benedikt Fauseweh, Michael Felderer, Elisabeth Lobe, Melven Röhrig-Zöllner, Gary Schmiedinghoff, Peter K. Schuhmacher, Yoshinta Setyawati, Alexander Weinert,
- Abstract要約: 量子コンピューティングの急速な進歩は、対応するソフトウェアエコシステムを構築するための科学的かつ厳密なアプローチを必要とする。
本章では,量子コンピューティングを科学的および産業的問題解決に利用可能にする,量子ソフトウェアエコシステムの構築に不可欠な科学的考察を紹介する。
- 参考スコア(独自算出の注目度): 35.12790469199701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancements in quantum computing necessitate a scientific and rigorous approach to the construction of a corresponding software ecosystem, a topic underexplored and primed for systematic investigation. This chapter takes an important step in this direction: It presents scientific considerations essential for building a quantum software ecosystem that makes quantum computing available for scientific and industrial problem solving. Central to this discourse is the concept of hardware-software co-design, which fosters a bidirectional feedback loop from the application layer at the top of the software stack down to the hardware. This approach begins with compilers and low-level software that are specifically designed to align with the unique specifications and constraints of the quantum processor, proceeds with algorithms developed with a clear understanding of underlying hardware and computational model features, and extends to applications that effectively leverage the capabilities to achieve a quantum advantage. We analyze the ecosystem from two critical perspectives: the conceptual view, focusing on theoretical foundations, and the technical infrastructure, addressing practical implementations around real quantum devices necessary for a functional ecosystem. This approach ensures that the focus is towards promising applications with optimized algorithm-circuit synergy, while ensuring a user-friendly design, an effective data management and an overall orchestration. Our chapter thus offers a guide to the essential concepts and practical strategies necessary for developing a scientifically grounded quantum software ecosystem.
- Abstract(参考訳): 量子コンピューティングの急速な進歩は、対応するソフトウェアエコシステムの構築に対する科学的かつ厳密なアプローチを必要とし、このトピックは、体系的な調査の過小評価され、素早いものとなった。
この章は、この方向に重要な一歩を踏み出します。 科学と産業の問題を解決するために量子コンピューティングを利用できる量子ソフトウェアエコシステムを構築するのに不可欠な科学的考察を提示します。
この話の中心は、ハードウェアとソフトウェアの共同設計の概念であり、ソフトウェアスタックの上部にあるアプリケーション層からハードウェアまで、双方向のフィードバックループを促進する。
このアプローチは、量子プロセッサのユニークな仕様と制約に特化して設計されたコンパイラと低レベルのソフトウェアから始まり、基盤となるハードウェアと計算モデルの特徴を明確に理解したアルゴリズムで進行し、量子優位性を達成するためにその能力を効果的に活用するアプリケーションにまで拡張する。
我々は、概念的視点、理論的基盤に焦点を当てた概念的視点と、機能的エコシステムに必要な実量子デバイスに関する実践的な実装に対処する技術的なインフラという、2つの重要な視点からエコシステムを分析します。
このアプローチは、ユーザフレンドリな設計、効率的なデータ管理、全体的なオーケストレーションを確保しながら、アルゴリズムと回路のシナジーを最適化した有望なアプリケーションに注力することを保証する。
この章では、科学的基盤を持つ量子ソフトウェアエコシステムの開発に必要な基本的な概念と実践戦略のガイドを提供しています。
関連論文リスト
- Architectural Patterns for Designing Quantum Artificial Intelligence Systems [25.42535682546052]
人工知能システムを強化するために量子コンピューティング技術を利用することで、トレーニングと推論時間を改善し、ノイズや敵攻撃に対する堅牢性を高め、精度を損なうことなくパラメータの数を減らすことが期待されている。
しかし、概念実証やシミュレーションを超えてこれらのシステムの実用的な応用を開発することは、量子ハードウェアの限界とそのようなシステムのソフトウェア工学における未発達の知識基盤によって大きな課題に直面している。
論文 参考訳(メタデータ) (2024-11-14T05:09:07Z) - An Abstraction Hierarchy Toward Productive Quantum Programming [0.3640881838485995]
本稿では,量子ソフトウェア工学を支援する抽象階層を提案する。
現在の技術で見られるプログラミング、実行、ハードウェアモデル間の重複の結果について論じる。
私たちの研究は、量子プログラミングにおける具体的な概念上の課題とギャップを指していますが、第一のテーマは、進化は抽象的階層についての考え方に直感的に焦点を当てることです。
論文 参考訳(メタデータ) (2024-05-22T18:48:36Z) - Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
本稿では,Quantum Software Develop-mentライフサイクルのビジョンを紹介する。
量子コンピューティングと古典コンピューティングを統合するハイブリッドフルスタック反復モデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:18:33Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - Quantum Software Analytics: Opportunities and Challenges [25.276328005616204]
量子コンピューティングシステムは、量子力学の原理に依拠し、従来のものよりもより効率的に挑戦的なタスクを実行する。
古典的なソフトウェア工学において、ソフトウェアライフサイクルは、ソフトウェアアプリケーションの設計、実装、保守プロセスの文書化と構造化に使用される。
開発ライフサイクルにおける一連のソフトウェア分析トピックとテクニックを要約し、量子ソフトウェアアプリケーション開発に活用し、統合することができる。
論文 参考訳(メタデータ) (2023-07-21T02:24:31Z) - Symbolic quantum programming for supporting applications of quantum
computing technologies [0.0]
本稿の主な焦点は、ツール開発による最も直接的なメリットを享受できる量子コンピューティング技術である。
量子ソフトウェア開発の分野で最も人気のあるアプローチについて、簡単な調査を行い、その長所と短所を示すことを目指しています。
次に、シンボリックアプローチを用いた量子プログラムの開発を支援するソフトウェアアーキテクチャとその予備実装について述べる。
論文 参考訳(メタデータ) (2023-02-18T18:30:00Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
大規模量子アプリケーションに必要なリソースを推定するために,スタックの層を抽象化し,量子リソース推定のためのフレームワークを開発する。
3つのスケールされた量子アプリケーションを評価し、実用的な量子優位性を達成するために数十万から数百万の物理量子ビットが必要であることを発見した。
私たちの研究の目標は、より広範なコミュニティがスタック全体の設計選択を探索できるようにすることで、実用的な量子的優位性に向けた進歩を加速することにあります。
論文 参考訳(メタデータ) (2022-11-14T18:50:27Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。