論文の概要: Architectural Patterns for Designing Quantum Artificial Intelligence Systems
- arxiv url: http://arxiv.org/abs/2411.10487v2
- Date: Tue, 19 Nov 2024 04:11:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:38:19.897555
- Title: Architectural Patterns for Designing Quantum Artificial Intelligence Systems
- Title(参考訳): 量子人工知能システム設計のためのアーキテクチャパターン
- Authors: Mykhailo Klymenko, Thong Hoang, Xiwei Xu, Zhenchang Xing, Muhammad Usman, Qinghua Lu, Liming Zhu,
- Abstract要約: 人工知能システムを強化するために量子コンピューティング技術を利用することで、トレーニングと推論時間を改善し、ノイズや敵攻撃に対する堅牢性を高め、精度を損なうことなくパラメータの数を減らすことが期待されている。
しかし、概念実証やシミュレーションを超えてこれらのシステムの実用的な応用を開発することは、量子ハードウェアの限界とそのようなシステムのソフトウェア工学における未発達の知識基盤によって大きな課題に直面している。
- 参考スコア(独自算出の注目度): 25.42535682546052
- License:
- Abstract: Utilising quantum computing technology to enhance artificial intelligence systems is expected to improve training and inference times, increase robustness against noise and adversarial attacks, and reduce the number of parameters without compromising accuracy. However, moving beyond proof-of-concept or simulations to develop practical applications of these systems while ensuring high software quality faces significant challenges due to the limitations of quantum hardware and the underdeveloped knowledge base in software engineering for such systems. In this work, we have conducted a systematic mapping study to identify the challenges and solutions associated with the software architecture of quantum-enhanced artificial intelligence systems. Our review uncovered several architectural patterns that describe how quantum components can be integrated into inference engines, as well as middleware patterns that facilitate communication between classical and quantum components. These insights have been compiled into a catalog of architectural patterns. Each pattern realises a trade-off between efficiency, scalability, trainability, simplicity, portability and deployability, and other software quality attributes.
- Abstract(参考訳): 人工知能システムを強化するために量子コンピューティング技術を利用することで、トレーニングと推論時間を改善し、ノイズや敵攻撃に対する堅牢性を高め、精度を損なうことなくパラメータの数を減らすことが期待されている。
しかし、量子ハードウェアの限界とそのようなシステムのソフトウェア工学における未発達の知識基盤が原因で、概念実証やシミュレーションを超えて、これらのシステムの実用的な応用を開発しつつ、高いソフトウェア品質を確保することは重大な課題に直面している。
本研究では,量子化人工知能システムのソフトウェアアーキテクチャに関連する課題と解決策を特定するために,系統的なマッピング研究を行った。
我々のレビューでは、量子コンポーネントを推論エンジンに統合する方法を説明するいくつかのアーキテクチャパターンと、古典的および量子的コンポーネント間の通信を容易にするミドルウェアパターンを明らかにした。
これらの洞察はアーキテクチャパターンのカタログにまとめられている。
各パターンは、効率性、スケーラビリティ、トレーサビリティ、単純さ、移植性、デプロイ性、その他のソフトウェア品質特性のトレードオフを実現する。
関連論文リスト
- Dynamic Inhomogeneous Quantum Resource Scheduling with Reinforcement Learning [17.229068960497273]
量子情報科学と技術における中心的な課題は、量子システムのリアルタイム推定とフィードフォワード制御の実現である。
量子ビット対の自己アテンション機構を強調するトランスフォーマーモデルを用いた新しいフレームワークを提案する。
提案手法は量子システムの性能を著しく改善し,ルールベースエージェントよりも3ドル以上向上する。
論文 参考訳(メタデータ) (2024-05-25T23:39:35Z) - Quantum Software Ecosystem Design [35.12790469199701]
量子コンピューティングの急速な進歩は、対応するソフトウェアエコシステムを構築するための科学的かつ厳密なアプローチを必要とする。
本章では,量子コンピューティングを科学的および産業的問題解決に利用可能にする,量子ソフトウェアエコシステムの構築に不可欠な科学的考察を紹介する。
論文 参考訳(メタデータ) (2024-05-21T23:11:11Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
期待されている量子コンピュータの応用は、科学と産業にまたがる。
本稿では,量子アルゴリズムの応用分野について検討する。
私たちは、各領域における課題と機会を"エンドツーエンド"な方法で概説します。
論文 参考訳(メタデータ) (2023-10-04T17:53:55Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
量子コンピューティング研究のための新しい種類のアプリケーション -- 計算認知モデリング -- をアンロックします。
我々は、認知モデルから量子コンピューティングアプリケーションのコレクションであるQUATROをリリースする。
論文 参考訳(メタデータ) (2023-09-01T17:34:53Z) - Software Architecture Challenges in Integrating Hybrid Classical-Quantum
Systems [3.2851683371946767]
量子コンピューティングの出現は、多くの科学と産業の応用領域を根本的に変換できる革命的パラダイムを提案する。
量子コンピュータが計算を指数関数的にスケールする能力は、現在のコンピュータが提供しているものよりも、特定のアルゴリズムタスクのパフォーマンスと効率を向上させる。
このような改善の恩恵を得るためには、量子コンピュータは既存のソフトウェアシステムと統合されなければならない。
論文 参考訳(メタデータ) (2023-08-02T08:20:34Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
デジタルハードウェアは、最適化、ディープラーニング、微分方程式に関する問題の解決に本質的に制約されていることを示す。
対照的に、Blum-Shub-Smale マシンのようなアナログコンピューティングモデルは、これらの制限を克服する可能性を示している。
論文 参考訳(メタデータ) (2023-07-03T19:10:45Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
量子コンピュータは、古典的コンピュータが決して起こらない重要な問題を効率的に解決することを約束する。
完全に自動化された量子ソフトウェアスタックを開発する必要がある。
この研究は、今日のツールの"内部"の外観を提供し、量子回路のシミュレーション、コンパイル、検証などにおいてこれらの手段がどのように利用されるかを示す。
論文 参考訳(メタデータ) (2023-01-10T19:00:00Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Learning Quantum Systems [0.0]
量子技術は、セキュアな通信、高性能コンピューティング、超精密センシングにおける画期的な応用によって、私たちの社会に革命をもたらすと約束している。
量子技術のスケールアップにおける主な特徴の1つは、量子システムの複雑さがその大きさと指数関数的にスケールすることである。
これは、量子状態の効率的なキャリブレーション、ベンチマーク、検証とその動的制御において深刻な問題を引き起こす。
論文 参考訳(メタデータ) (2022-07-01T09:47:26Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
我々は、量子幾何学的制御問題に対するディープラーニングの適用をレビューし、拡張する。
量子回路合成問題における時間-最適制御の強化について述べる。
我々の研究結果は、時間-最適制御問題に対する機械学習と幾何学的手法を組み合わせた量子制御と量子情報理論の研究者にとって興味深いものである。
論文 参考訳(メタデータ) (2020-06-19T19:12:14Z) - Software tools for quantum control: Improving quantum computer
performance through noise and error suppression [3.6508609114589317]
量子コンピューティング研究における量子制御の応用と統合のためのソフトウェアツールを紹介する。
我々は、最適化された量子制御ソリューションを作成し、デプロイするための、ピソンベースの古典的ソフトウェアツールのセットの概要を提供する。
本稿では,高性能分散クラウド計算とハードウェアシステムへのローカルカスタム統合の両方を活用するソフトウェアアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2020-01-13T04:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。