Quantum criticality of generalized Aubry-André models with exact mobility edges using fidelity susceptibility
- URL: http://arxiv.org/abs/2405.13282v1
- Date: Wed, 22 May 2024 01:33:04 GMT
- Title: Quantum criticality of generalized Aubry-André models with exact mobility edges using fidelity susceptibility
- Authors: Yu-Bin Liu, Wen-Yi Zhang, Tian-Cheng Yi, Liangsheng Li, Maoxin Liu, Wen-Long You,
- Abstract summary: We use quantum fidelity susceptibility to precisely identify the mobility edges in generalized Aubry-Andr'e models.
Our findings demonstrate the effectiveness of employing the generalized fidelity susceptibility for the analysis of unconventional quantum criticality.
- Score: 5.866320821393424
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we explore the quantum critical phenomena in generalized Aubry-Andr\'{e} models, with a particular focus on the scaling behavior at various filling states. Our approach involves using quantum fidelity susceptibility to precisely identify the mobility edges in these systems. Through a finite-size scaling analysis of the fidelity susceptibility, we are able to determine both the correlation-length critical exponent and the dynamical critical exponent at the critical point of the generalized Aubry-Andr\'{e} model. Based on the Diophantine equation conjecture, we can determines the number of subsequences of the Fibonacci sequence and the corresponding scaling functions for a specific filling fraction, as well as the universality class. Our findings demonstrate the effectiveness of employing the generalized fidelity susceptibility for the analysis of unconventional quantum criticality and the associated universal information of quasiperiodic systems in cutting-edge quantum simulation experiments.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Collisional thermometry for Gaussian systems [0.0]
We investigate a quantum thermometry scheme based collision model with Gaussian systems.
A key open question of these schemes concerns the scaling of the Quantum Fisher Information (QFI) with the number of ancillae.
Here we focus on Gaussian collision models, which allow for the scaling of the QFI to be evaluated for arbitrarily large sizes.
arXiv Detail & Related papers (2024-05-20T13:54:25Z) - Expressibility-induced Concentration of Quantum Neural Tangent Kernels [4.561685127984694]
We study the connections between the trainability and expressibility of quantum tangent kernel models.
For global loss functions, we rigorously prove that high expressibility of both the global and local quantum encodings can lead to exponential concentration of quantum tangent kernel values to zero.
Our discoveries unveil a pivotal characteristic of quantum neural tangent kernels, offering valuable insights for the design of wide quantum variational circuit models.
arXiv Detail & Related papers (2023-11-08T19:00:01Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Critical steady states of all-to-all squeezed and driven superradiance:
An analytic approach [0.0]
We analyse the properties across steady state phase transitions of two all-to-all driven-dissipative spin models.
We show that the finite size behaviour can be captured correctly by carefully identifying the relevant non-linearities in the Holstein-Primakoff representation.
arXiv Detail & Related papers (2023-07-11T08:48:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Exploring unconventional quantum criticality in the p-wave-paired
Aubry-Andr\'{e}-Harper model [0.5937476291232802]
We investigate scaling properties near the quantum critical point in the Aubry-Andr'e-Harper model with p-wave pairing.
We find that the spectrum averaged entanglement entropy and the generalized fidelity susceptibility act as eminent universal order parameters of the corresponding critical point.
arXiv Detail & Related papers (2022-10-13T05:10:43Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
We study the phenomena of quantum chaos and complexity in the machine learning dynamics of Quantum Neural Network (QNN)
We employ a statistical and differential geometric approach to study the learning theory of QNN.
arXiv Detail & Related papers (2020-11-16T10:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.