論文の概要: Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings
- arxiv url: http://arxiv.org/abs/2405.13356v1
- Date: Wed, 22 May 2024 05:19:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 01:14:40.793840
- Title: Large Language Models (LLMs) Assisted Wireless Network Deployment in Urban Settings
- Title(参考訳): 都市域における大規模言語モデル(LLM)による無線ネットワークの展開
- Authors: Nurullah Sevim, Mostafa Ibrahim, Sabit Ekin,
- Abstract要約: 大きな言語モデル(LLM)は、言語理解と人間に似たテキスト生成に革命をもたらした。
本稿では,6G(第6世代)無線通信技術におけるLCMの電力利用技術について検討する。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.21847754147782888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of Large Language Models (LLMs) has revolutionized language understanding and human-like text generation, drawing interest from many other fields with this question in mind: What else are the LLMs capable of? Despite their widespread adoption, ongoing research continues to explore new ways to integrate LLMs into diverse systems. This paper explores new techniques to harness the power of LLMs for 6G (6th Generation) wireless communication technologies, a domain where automation and intelligent systems are pivotal. The inherent adaptability of LLMs to domain-specific tasks positions them as prime candidates for enhancing wireless systems in the 6G landscape. We introduce a novel Reinforcement Learning (RL) based framework that leverages LLMs for network deployment in wireless communications. Our approach involves training an RL agent, utilizing LLMs as its core, in an urban setting to maximize coverage. The agent's objective is to navigate the complexities of urban environments and identify the network parameters for optimal area coverage. Additionally, we integrate LLMs with Convolutional Neural Networks (CNNs) to capitalize on their strengths while mitigating their limitations. The Deep Deterministic Policy Gradient (DDPG) algorithm is employed for training purposes. The results suggest that LLM-assisted models can outperform CNN-based models in some cases while performing at least as well in others.
- Abstract(参考訳): LLM(Large Language Models)の出現は、言語理解とヒューマンライクなテキスト生成に革命をもたらし、この疑問を念頭に置いて、他の多くの分野から関心を集めている。
広く採用されているにもかかわらず、現在進行中の研究は、LSMを多様なシステムに統合する新しい方法を模索している。
本稿では,6G(第6世代)無線通信技術におけるLCMのパワーを活用するための新しい手法について検討する。
LLMのドメイン固有のタスクへの固有の適応性は、それらを6Gランドスケープにおける無線システムを強化するための主要な候補として位置づけている。
無線通信におけるネットワーク展開にLLMを利用する新しい強化学習(RL)フレームワークを提案する。
本手法では,都市環境下でLLMをコアとしてRLエージェントを訓練し,カバー範囲を最大化する。
エージェントの目的は、都市環境の複雑さをナビゲートし、最適なエリアカバレッジのためのネットワークパラメータを特定することである。
さらに、LLMを畳み込みニューラルネットワーク(CNN)と統合して、制限を緩和しながら、その強みを活かします。
Deep Deterministic Policy Gradient (DDPG)アルゴリズムは、トレーニング目的に使用される。
以上の結果から,LLM支援モデルはCNNモデルよりも優れ,少なくとも他のモデルよりも優れる可能性が示唆された。
関連論文リスト
- All Against Some: Efficient Integration of Large Language Models for Message Passing in Graph Neural Networks [51.19110891434727]
事前訓練された知識と強力なセマンティック理解能力を持つ大規模言語モデル(LLM)は、最近、視覚とテキストデータを使用してアプリケーションに恩恵をもたらす顕著な能力を示している。
E-LLaGNNは、グラフから限られたノード数を増やして、グラフ学習のメッセージパッシング手順を強化するオンデマンドLLMサービスを備えたフレームワークである。
論文 参考訳(メタデータ) (2024-07-20T22:09:42Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
大規模言語モデル(LLM)が最近登場し、認知タスクにおけるほぼ人間レベルのパフォーマンスを実証している。
次世代AI-in-the-loop」の概念を提案する。
LLMとMLモデルを組み合わせることで、それぞれの能力を活用し、どちらのモデルよりも優れた結果が得られると考えています。
論文 参考訳(メタデータ) (2024-06-06T17:25:07Z) - Large Language Model (LLM) for Telecommunications: A Comprehensive Survey on Principles, Key Techniques, and Opportunities [36.711166825551715]
大規模言語モデル(LLM)は、その優れた理解力と推論能力により、最近かなりの注目を集めている。
本研究は,LLM対応通信網の概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-05-17T14:46:13Z) - When Large Language Models Meet Optical Networks: Paving the Way for Automation [17.4503217818141]
物理層をインテリジェントに制御し,アプリケーション層との相互作用を効果的に行うことを目的として,LLMを利用した光ネットワークのフレームワークを提案する。
提案手法は,ネットワークアラーム解析とネットワーク性能最適化の2つの典型的なタスクで検証される。
良好な応答精度と2,400個のテスト状況のセマティックな類似性は、光ネットワークにおけるLLMの大きな可能性を示している。
論文 参考訳(メタデータ) (2024-05-14T10:46:33Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
大規模言語モデル(LLM)は、テキストの理解と生成において印象的な能力を示した。
ビデオベースの対話システムでビデオを効果的にエンコードし、理解する方法は、まだ解決されていない。
LLM内部の時空間シーケンスをモデル化したビデオLLMベースラインST-LLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T10:11:26Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
トレーニング環境を適応的に作成するフレームワークであるEnvGenを提案する。
我々は、LLM生成環境とLLM生成環境を混合した小さなRLエージェントを訓練する。
我々は、EnvGenで訓練された小さなRLエージェントが、GPT-4エージェントを含むSOTAメソッドより優れており、長い水平タスクをかなり高速に学習できることを発見した。
論文 参考訳(メタデータ) (2024-03-18T17:51:16Z) - NetLLM: Adapting Large Language Models for Networking [36.61572542761661]
我々は,ネットワーク問題を解決するために,大規模言語モデルを効率的に適応する最初のフレームワークであるNetLLMを提案する。
ネットワークへのLLM適応におけるNetLLMの有効性を実証し、適応されたLLMが最先端のアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-04T04:21:34Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
本稿では,LMRL-Gymベンチマークを用いて,大規模言語モデル(LLM)のマルチターンRLの評価を行う。
我々のベンチマークは8つの異なる言語タスクで構成されており、複数ラウンドの言語相互作用が必要であり、オープンエンド対話やテキストゲームにおける様々なタスクをカバーする。
論文 参考訳(メタデータ) (2023-11-30T03:59:31Z) - Pushing Large Language Models to the 6G Edge: Vision, Challenges, and
Opportunities [32.035405009895264]
大規模言語モデル(LLM)はAI開発に革命をもたらし、私たちの未来を形作る可能性がある。
1) 長時間の応答時間、2) 帯域幅のコスト、3) データプライバシの侵害。
6Gモバイルエッジコンピューティング(MEC)システムは、これらのプレス問題を解決できるかもしれない。
本稿は,6GエッジにおけるLCMのモチベーション,課題,経路を徹底的に特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2023-09-28T06:22:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。