論文の概要: EgoChoir: Capturing 3D Human-Object Interaction Regions from Egocentric Views
- arxiv url: http://arxiv.org/abs/2405.13659v2
- Date: Sun, 13 Oct 2024 05:23:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:02:22.865102
- Title: EgoChoir: Capturing 3D Human-Object Interaction Regions from Egocentric Views
- Title(参考訳): EgoChoir:エゴセントリックな視点から3Dオブジェクトインタラクション領域をキャプチャする
- Authors: Yuhang Yang, Wei Zhai, Chengfeng Wang, Chengjun Yu, Yang Cao, Zheng-Jun Zha,
- Abstract要約: エゴセントリックな人間と物体の相互作用(HOI)を理解することは、人間中心の知覚の基本的な側面である。
既存の手法は主にHOIの観測を利用して、外心的な視点から相互作用領域を捉えている。
EgoChoirは、オブジェクト構造と、外見と頭部運動に固有の相互作用コンテキストを結びつけて、オブジェクトの余裕を明らかにする。
- 参考スコア(独自算出の注目度): 51.53089073920215
- License:
- Abstract: Understanding egocentric human-object interaction (HOI) is a fundamental aspect of human-centric perception, facilitating applications like AR/VR and embodied AI. For the egocentric HOI, in addition to perceiving semantics e.g., ''what'' interaction is occurring, capturing ''where'' the interaction specifically manifests in 3D space is also crucial, which links the perception and operation. Existing methods primarily leverage observations of HOI to capture interaction regions from an exocentric view. However, incomplete observations of interacting parties in the egocentric view introduce ambiguity between visual observations and interaction contents, impairing their efficacy. From the egocentric view, humans integrate the visual cortex, cerebellum, and brain to internalize their intentions and interaction concepts of objects, allowing for the pre-formulation of interactions and making behaviors even when interaction regions are out of sight. In light of this, we propose harmonizing the visual appearance, head motion, and 3D object to excavate the object interaction concept and subject intention, jointly inferring 3D human contact and object affordance from egocentric videos. To achieve this, we present EgoChoir, which links object structures with interaction contexts inherent in appearance and head motion to reveal object affordance, further utilizing it to model human contact. Additionally, a gradient modulation is employed to adopt appropriate clues for capturing interaction regions across various egocentric scenarios. Moreover, 3D contact and affordance are annotated for egocentric videos collected from Ego-Exo4D and GIMO to support the task. Extensive experiments on them demonstrate the effectiveness and superiority of EgoChoir.
- Abstract(参考訳): Egocentric Human-Object Interaction(HOI)を理解することは、人間中心の認識の基本的な側面であり、AR/VRや組み込みAIといった応用を促進する。
エゴセントリックなHOIにとって、セマンティックスegの知覚に加えて、「何を」相互作用が起きているのかを把握し、3次元空間に特異的に現れる相互作用も重要であり、それが知覚と操作を結びつけている。
既存の手法は主にHOIの観測を利用して、外心的な視点から相互作用領域を捉えている。
しかし、自己中心的視点における相互作用する参加者の不完全な観察は、視覚的観察と相互作用の内容とのあいまいさをもたらし、その効果を損なう。
人間は視覚野、小脳、脳を統合して、物体の意図や相互作用の概念を内包し、相互作用の事前形成と、相互作用領域が見えない場合でも行動を起こすことができる。
そこで本研究では,視覚的外見,頭部運動,三次元物体を調和させて,物体の相互作用の概念と対象意図を探索し,人間との接触を3Dで推定し,自我中心の映像から物価を推定する手法を提案する。
これを実現するために,物体構造と外見と頭部運動に固有の相互作用コンテキストを関連付けるEgoChoirを提案し,それを利用して人間の接触をモデル化する。
さらに、様々なエゴセントリックなシナリオ間での相互作用領域のキャプチャに適切な手がかりを採用するために、勾配変調を用いる。
さらに,Ego-Exo4DとGIMOから収集したエゴセントリックなビデオに3Dコンタクトとアプライアンスを付加し,タスクを支援する。
これらの実験は、EgoChoirの有効性と優位性を示している。
関連論文リスト
- Grounding 3D Scene Affordance From Egocentric Interactions [52.5827242925951]
接地型3Dシーンアベイランスは、3D環境におけるインタラクティブな領域を見つけることを目的としている。
我々は,エゴセントリックなインタラクションから3Dシーンの空き時間を確保するという,新しい課題を紹介した。
論文 参考訳(メタデータ) (2024-09-29T10:46:19Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
ロボティクス、AR/VR、アクション認識、モーション生成といったタスクにおいて、自己中心的な視点からこのようなインタラクションを理解することが重要である。
我々は、AmblyHandsとARCTICデータセットに基づいたHANDS23チャレンジを、慎重に設計されたトレーニングとテストの分割に基づいて設計する。
提案手法の結果と近年のリーダーボードのベースラインに基づいて,3Dハンド(オブジェクト)再構成タスクの徹底的な解析を行う。
論文 参考訳(メタデータ) (2024-03-25T05:12:21Z) - EgoGen: An Egocentric Synthetic Data Generator [53.32942235801499]
EgoGenは新しい合成データジェネレータで、エゴセントリックな知覚タスクのための正確でリッチな地上訓練データを生成することができる。
EgoGenの中心となるのは、仮想人間の自我中心の視覚入力を直接利用して3D環境を感知する、新しい人間のモーション合成モデルである。
我々は、ヘッドマウントカメラのマッピングとローカライゼーション、エゴセントリックカメラトラッキング、エゴセントリックビューからのヒューマンメッシュリカバリの3つのタスクで、EgoGenの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-16T18:55:22Z) - LEMON: Learning 3D Human-Object Interaction Relation from 2D Images [56.6123961391372]
人間の物体と物体の相互作用関係の学習は、AIと相互作用モデリングの具体化に不可欠である。
既存のほとんどの手法は、孤立した相互作用要素を予測することを学ぶことで目標に近づいている。
本稿では,相互の相互作用意図をマイニングし,幾何相関の抽出を導出するための曲率を用いた統一モデルLEMONを提案する。
論文 参考訳(メタデータ) (2023-12-14T14:10:57Z) - Ego-Body Pose Estimation via Ego-Head Pose Estimation [22.08240141115053]
エゴセントリックなビデオシーケンスから3次元の人間の動きを推定することは、人間の行動理解において重要な役割を担い、VR/ARに様々な応用がある。
Ego-Head Pose Estimation (EgoEgo) と呼ばれる新しい手法を提案する。
この頭と体のポーズのゆがみは、ペア化されたエゴセントリックなビデオと3D人間の動きでデータセットをトレーニングする必要をなくす。
論文 参考訳(メタデータ) (2022-12-09T02:25:20Z) - The MECCANO Dataset: Understanding Human-Object Interactions from
Egocentric Videos in an Industrial-like Domain [20.99718135562034]
我々は,産業的な環境下での人間と物体の相互作用を研究するための,エゴセントリックビデオの最初のデータセットであるMECCANOを紹介した。
このデータセットは、人間とオブジェクトの相互作用をエゴセントリックな視点から認識するタスクのために明示的にラベル付けされている。
ベースラインの結果から,MECCANOデータセットは,産業的なシナリオにおける自我中心の人間とオブジェクトの相互作用を研究する上で,困難なベンチマークであることが示された。
論文 参考訳(メタデータ) (2020-10-12T12:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。