Lossy-and-Constrained Extended Non-Local Games with Applications to Cryptography: BC, QKD and QPV
- URL: http://arxiv.org/abs/2405.13717v1
- Date: Wed, 22 May 2024 15:09:30 GMT
- Title: Lossy-and-Constrained Extended Non-Local Games with Applications to Cryptography: BC, QKD and QPV
- Authors: Llorenç Escolà-Farràs, Florian Speelman,
- Abstract summary: We show that if one extends such games by considering constraints and loss, the convergence of the SDPs to the optimal value still holds.
We give applications of this result, and we compute SDPs that show tighter security of protocols for relativistic bit commitment, quantum key distribution, and quantum position verification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended non-local games are a generalization of monogamy-of-entanglement games, played by two quantum parties and a quantum referee that performs a measurement on their local quantum system. Along the lines of the NPA hierarchy, the optimal winning probability of those games can be upper bounded by a hierarchy of semidefinite programs (SDPs) converging to the optimal value. Here, we show that if one extends such games by considering constraints and loss, motivated by experimental errors and loss through quantum communication, the convergence of the SDPs to the optimal value still holds. We give applications of this result, and we compute SDPs that show tighter security of protocols for relativistic bit commitment, quantum key distribution, and quantum position verification.
Related papers
- A quantum cloning game with applications to quantum position verification [0.0]
We introduce a quantum cloning game in which $k$ separate collaborative parties receive a classical input.
We provide the optimal winning probability of such a game for every number of parties $k$, and show that it decays exponentially when the game is played $n$ times in parallel.
arXiv Detail & Related papers (2024-10-29T15:53:19Z) - A bound on the quantum value of all compiled nonlocal games [49.32403970784162]
A cryptographic compiler converts any nonlocal game into an interactive protocol with a single computationally bounded prover.
We establish a quantum soundness result for all compiled two-player nonlocal games.
arXiv Detail & Related papers (2024-08-13T08:11:56Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Device independent security of quantum key distribution from
monogamy-of-entanglement games [10.60608983034705]
We propose a general device independent quantum key distribution protocol for non-local games.
We numerically optimize the finite and tripartite secret key rates of our protocol.
We show that our protocol is robust for depolarizing noise up to about $2.2%$, providing the first such bound for general attacks for magic square based quantum key distribution.
arXiv Detail & Related papers (2023-12-07T06:48:38Z) - Photonic implementation of the quantum Morra game [69.65384453064829]
We study a faithful translation of a two-player quantum Morra game, which builds on previous work by including the classical game as a special case.
We propose a natural deformation of the game in the quantum regime in which Alice has a winning advantage, breaking the balance of the classical game.
We discuss potential applications of the quantum Morra game to the study of quantum information and communication.
arXiv Detail & Related papers (2023-11-14T19:41:50Z) - Single-qubit loss-tolerant quantum position verification protocol secure
against entangled attackers [0.0]
We study the exact loss-tolerance of the most popular protocol for QPV, which is based on BB84 states.
We show how these results transfer to the variant protocol which combines $n$ bits of classical information with a single qubit.
arXiv Detail & Related papers (2022-12-07T14:39:56Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Quantum version of a generalized Monty Hall game and its possible
applications to quantum secure communications [0.0]
We propose a quantum version of a generalized Monty Hall game, in which the parameters of the game are left free, and not fixed on its regular values.
We extend our quantum scheme to include multiple independent players, and use this extension to sketch two possible application of the game mechanics to quantum networks.
arXiv Detail & Related papers (2020-10-26T17:57:12Z) - Computing conditional entropies for quantum correlations [10.549307055348596]
In particular, we find new upper bounds on the minimal global detection efficiency required to perform device-independent quantum key distribution.
We introduce the family of iterated mean quantum R'enyi divergences with parameters $alpha_k = 1+frac12k-1$ for positive integers $k$.
We show that the corresponding conditional entropies admit a particularly nice form which, in the context of device-independent optimization, can be relaxed to a semidefinite programming problem.
arXiv Detail & Related papers (2020-07-24T15:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.