論文の概要: Offline RL via Feature-Occupancy Gradient Ascent
- arxiv url: http://arxiv.org/abs/2405.13755v1
- Date: Wed, 22 May 2024 15:39:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:25:17.876256
- Title: Offline RL via Feature-Occupancy Gradient Ascent
- Title(参考訳): 機能停止時勾配上昇によるオフラインRL
- Authors: Gergely Neu, Nneka Okolo,
- Abstract要約: 大規模無限水平割引マルコフ決定過程(MDP)におけるオフライン強化学習の研究
我々は,特徴占有空間における勾配上昇の形式を実行する新しいアルゴリズムを開発した。
結果として得られた単純なアルゴリズムは、強い計算とサンプルの複雑さの保証を満たすことを示す。
- 参考スコア(独自算出の注目度): 9.983014605039658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study offline Reinforcement Learning in large infinite-horizon discounted Markov Decision Processes (MDPs) when the reward and transition models are linearly realizable under a known feature map. Starting from the classic linear-program formulation of the optimal control problem in MDPs, we develop a new algorithm that performs a form of gradient ascent in the space of feature occupancies, defined as the expected feature vectors that can potentially be generated by executing policies in the environment. We show that the resulting simple algorithm satisfies strong computational and sample complexity guarantees, achieved under the least restrictive data coverage assumptions known in the literature. In particular, we show that the sample complexity of our method scales optimally with the desired accuracy level and depends on a weak notion of coverage that only requires the empirical feature covariance matrix to cover a single direction in the feature space (as opposed to covering a full subspace). Additionally, our method is easy to implement and requires no prior knowledge of the coverage ratio (or even an upper bound on it), which altogether make it the strongest known algorithm for this setting to date.
- Abstract(参考訳): 報奨モデルと遷移モデルが既知の特徴写像の下で線形に実現可能である場合、大規模な無限水平割引マルコフ決定過程(MDP)におけるオフライン強化学習について検討する。
MDPにおける最適制御問題の古典的線形プログラムの定式化から始まり、我々は、環境におけるポリシーの実行によって生成される可能性のある期待特徴ベクトルとして定義される特徴占有空間における勾配上昇の形式を実行する新しいアルゴリズムを開発した。
得られた単純なアルゴリズムは、文献で知られている最小限の制約付きデータカバレッジ仮定の下で達成される、強い計算とサンプルの複雑さの保証を満たすことを示す。
特に,本手法のサンプル複雑性は,所望の精度レベルと最適にスケールし,特徴空間の単一方向をカバーするために経験的特徴共分散行列のみを必要とする範囲の弱い概念に依存する(全部分空間をカバーするのとは対照的に)。
さらに,本手法は実装が容易で,カバー率(あるいは上界さえも)の事前知識を必要としないため,これまでで最強のアルゴリズムとなっている。
関連論文リスト
- Sample Complexity of Offline Distributionally Robust Linear Markov Decision Processes [37.15580574143281]
オフライン強化学習(RL)
本稿では、オフラインデータを用いた全変動距離を特徴とする不確実性を伴う分布安定線形マルコフ決定過程(MDP)のサンプル複雑性について考察する。
我々は悲観的なモデルに基づくアルゴリズムを開発し、最小限のデータカバレッジ仮定の下でそのサンプルの複雑さを確立する。
論文 参考訳(メタデータ) (2024-03-19T17:48:42Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - Offline Reinforcement Learning with Additional Covering Distributions [0.0]
我々は,関数近似を用いて,ログ化されたデータセット,すなわちオフラインRLから最適ポリシーを学習する。
一般のMDPに対するサンプル効率のよいオフラインRLは、部分的カバレッジデータセットと弱い実現可能な関数クラスだけで実現可能であることを示す。
論文 参考訳(メタデータ) (2023-05-22T03:31:03Z) - Offline Minimax Soft-Q-learning Under Realizability and Partial Coverage [100.8180383245813]
オフライン強化学習(RL)のための値ベースアルゴリズムを提案する。
ソフトマージン条件下でのバニラQ関数の類似した結果を示す。
我々のアルゴリズムの損失関数は、推定問題を非線形凸最適化問題とラグランジフィケーションとしてキャストすることによって生じる。
論文 参考訳(メタデータ) (2023-02-05T14:22:41Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
線形2次レギュレータ(LQR)問題における最適ポリシーを見つけるための強化学習法について検討する。
我々は、有限時間地平線と弱い仮定の下での状態ダイナミクスの設定に対する大域的線形収束を保証する。
基礎となるダイナミクスのモデルを仮定し、データに直接メソッドを適用する場合の結果を示す。
論文 参考訳(メタデータ) (2020-11-20T09:51:49Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。