論文の概要: Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
- arxiv url: http://arxiv.org/abs/2405.13791v1
- Date: Wed, 22 May 2024 16:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 23:15:30.232069
- Title: Multi-Type Point Cloud Autoencoder: A Complete Equivariant Embedding for Molecule Conformation and Pose
- Title(参考訳): Multi-Type Point Cloud Autoencoder: 分子のコンフォーメーションとポースのための完全同変埋め込み
- Authors: Michael Kilgour, Jutta Rogal, Mark Tuckerman,
- Abstract要約: 我々は,マルチタイプの点群に対する新しいタイプのオートエンコーダである分子O(3)エンコーディングネット(Mo3ENet)を開発し,訓練し,評価する。
Mo3ENetはエンドツーエンドの同変であり、学習した表現をO(3)で操作することができる。
- 参考スコア(独自算出の注目度): 0.8886153850492464
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The point cloud is a flexible representation for a wide variety of data types, and is a particularly natural fit for the 3D conformations of molecules. Extant molecule embedding/representation schemes typically focus on internal degrees of freedom, ignoring the global 3D orientation. For tasks that depend on knowledge of both molecular conformation and 3D orientation, such as the generation of molecular dimers, clusters, or condensed phases, we require a representation which is provably complete in the types and positions of atomic nuclei and roto-inversion equivariant with respect to the input point cloud. We develop, train, and evaluate a new type of autoencoder, molecular O(3) encoding net (Mo3ENet), for multi-type point clouds, for which we propose a new reconstruction loss, capitalizing on a Gaussian mixture representation of the input and output point clouds. Mo3ENet is end-to-end equivariant, meaning the learned representation can be manipulated on O(3), a practical bonus for downstream learning tasks. An appropriately trained Mo3ENet latent space comprises a universal embedding for scalar and vector molecule property prediction tasks, as well as other downstream tasks incorporating the 3D molecular pose.
- Abstract(参考訳): 点雲は様々な種類のデータに対して柔軟な表現であり、分子の3D配座に特に適している。
分子の埋め込み/表現スキームは、一般的に内部自由度に焦点を合わせ、グローバルな3D配向を無視している。
分子二量体、クラスター、凝縮相の生成など、分子配向と3次元配向の両方の知識に依存するタスクには、入力点雲に対する原子核のタイプと位置、およびロト反転等式において、確実に完備な表現が必要である。
我々は,新しいタイプのオートエンコーダである分子O(3)エンコードネット (Mo3ENet) を開発し,訓練し,評価する。
Mo3ENetはエンドツーエンドの同変であり、学習した表現をO(3)で操作することができる。
適切に訓練されたMo3ENet潜伏空間は、スカラーおよびベクトル分子特性予測タスクのための普遍的な埋め込みと、3D分子のポーズを組み込んだ他の下流タスクを含む。
関連論文リスト
- MolMix: A Simple Yet Effective Baseline for Multimodal Molecular Representation Learning [17.93173928602627]
本稿では,マルチモーダル分子表現学習のためのトランスフォーマーベースラインを提案する。
我々は,SMILES文字列,2次元グラフ表現,分子の3次元コンフォメータの3つの異なるモダリティを統合する。
その単純さにもかかわらず、我々の手法は複数のデータセットにまたがって最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-10T14:36:58Z) - SE3Set: Harnessing equivariant hypergraph neural networks for molecular representation learning [27.713870291922333]
分子表現学習に適したSE(3)同変ハイパーグラフニューラルネットワークアーキテクチャを開発した。
SE3Setは、小さな分子データセットのための最先端(SOTA)モデルと同等のパフォーマンスを示している。
MD22データセットを上回り、全ての分子で約20%の精度で顕著な改善を達成している。
論文 参考訳(メタデータ) (2024-05-26T10:43:16Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
本稿では,原子の特徴,2次元離散分子構造,および3次元連続分子座標を含む分子の包括的表現を生成する新しいモデルを提案する。
拡散過程を認知するための新しいグラフトランスフォーマーアーキテクチャを提案する。
我々のモデルは、安定で多様な分子を設計するための有望なアプローチであり、分子モデリングの幅広いタスクに適用できる。
論文 参考訳(メタデータ) (2023-04-28T04:25:57Z) - One Transformer Can Understand Both 2D & 3D Molecular Data [94.93514673086631]
我々はTransformer-Mと呼ばれる新しい分子モデルを開発した。
入力として2Dまたは3Dフォーマットの分子データを取り込み、意味のある意味表現を生成する。
実験の結果,Transformer-Mは2次元および3次元のタスクで高い性能を同時に達成できることがわかった。
論文 参考訳(メタデータ) (2022-10-04T17:30:31Z) - Learning 3D Representations of Molecular Chirality with Invariance to
Bond Rotations [2.17167311150369]
3次元分子コンバータのねじれ角を処理するSE(3)不変モデルを設計する。
本研究では, 学習空間における異なる立体異性体のコンホメータを識別するコントラスト学習, キラル中心をR/Sに分類する学習, エンテロマーが円偏光でどのように回転するかの予測, タンパクポケット内のドッキングスコアによるエナンチオマーのランキングの4つのベンチマークを用いて実験を行った。
論文 参考訳(メタデータ) (2021-10-08T21:25:47Z) - 3D-Transformer: Molecular Representation with Transformer in 3D Space [11.947499562836953]
3Dトランスフォーマー(3D-Transformer)は、3D空間情報を組み込んだ分子表現用トランスフォーマーの変種である。
本実験は, 結晶特性予測タスクとタンパク質-リガンド結合親和性予測タスクにおいて, 最先端モデルに対して有意な改善が認められた。
論文 参考訳(メタデータ) (2021-10-04T05:11:23Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
入力2つの3次元形状を考慮したニューラルネットワークアーキテクチャであるNeuroMorphを提案する。
NeuroMorphはそれらの間のスムーズかつポイントツーポイント対応を生成する。
異なる対象カテゴリの非等尺性ペアを含む、さまざまな入力形状に対してうまく機能する。
論文 参考訳(メタデータ) (2021-06-17T12:25:44Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Neural Mesh Flow: 3D Manifold Mesh Generation via Diffeomorphic Flows [79.39092757515395]
ニューラルメッシュフロー (NMF) を用いて, 種数0の2次元メッシュを生成する。
NMFは数個のニューラル正規微分方程式(NODE)ブロックからなる形状自動エンコーダで、球面メッシュを段階的に変形させることで正確なメッシュ形状を学習する。
実験の結果,NMFは単一視点メッシュ再構成,大域的な形状パラメータ化,テクスチャマッピング,形状変形,対応性など,いくつかの応用に役立つことがわかった。
論文 参考訳(メタデータ) (2020-07-21T17:45:41Z) - PointGMM: a Neural GMM Network for Point Clouds [83.9404865744028]
点雲は3次元形状の一般的な表現であるが、形状の先行や非局所的な情報を考慮せずに特定のサンプリングを符号化する。
本稿では,形状クラスの特徴であるhGMMの生成を学習するニューラルネットワークであるPointGMMを提案する。
生成モデルとして、PointGMMは既存の形状間の整合性を生成できる有意義な潜在空間を学習することを示す。
論文 参考訳(メタデータ) (2020-03-30T10:34:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。