Conditioning diffusion models by explicit forward-backward bridging
- URL: http://arxiv.org/abs/2405.13794v2
- Date: Thu, 20 Feb 2025 09:06:16 GMT
- Title: Conditioning diffusion models by explicit forward-backward bridging
- Authors: Adrien Corenflos, Zheng Zhao, Simo Särkkä, Jens Sjölund, Thomas B. Schön,
- Abstract summary: Given an unconditional diffusion model targeting a joint model $pi(x, y)$, using it to perform conditional simulation $pi(x mid y)$ is still largely an open question.<n>We express emphexact conditional simulation within the emphapproximate diffusion model as an inference problem on an augmented space corresponding to a partial SDE bridge.
- Score: 18.358369507787742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given an unconditional diffusion model targeting a joint model $\pi(x, y)$, using it to perform conditional simulation $\pi(x \mid y)$ is still largely an open question and is typically achieved by learning conditional drifts to the denoising SDE after the fact. In this work, we express \emph{exact} conditional simulation within the \emph{approximate} diffusion model as an inference problem on an augmented space corresponding to a partial SDE bridge. This perspective allows us to implement efficient and principled particle Gibbs and pseudo-marginal samplers marginally targeting the conditional distribution $\pi(x \mid y)$. Contrary to existing methodology, our methods do not introduce any additional approximation to the unconditional diffusion model aside from the Monte Carlo error. We showcase the benefits and drawbacks of our approach on a series of synthetic and real data examples.
Related papers
- Acoustic Waveform Inversion with Image-to-Image Schrödinger Bridges [0.0]
We introduce a conditional Image-to-Image Schr"odinger Bridge (c$textI2textSB$) framework to generate high-resolution samples.<n>Our experiments demonstrate that the proposed solution outperforms our reimplementation of conditional diffusion model.
arXiv Detail & Related papers (2025-06-18T10:55:26Z) - A PDE-Based Image Dehazing Method via Atmospheric Scattering Theory [2.17172315573773]
This paper presents a novel partial differential equation (PDE) framework for single-image dehazing.<n>By integrating the atmospheric scattering model with nonlocal regularization and dark channel prior, we propose the improved PDE.
arXiv Detail & Related papers (2025-06-10T13:43:09Z) - Schr\"odinger bridge based deep conditional generative learning [0.0]
We introduce a novel Schr"odinger bridge based deep generative method for learning conditional distributions.
We apply our method to both low-dimensional and high-dimensional conditional generation problems.
arXiv Detail & Related papers (2024-09-25T19:08:13Z) - Non-asymptotic bounds for forward processes in denoising diffusions: Ornstein-Uhlenbeck is hard to beat [49.1574468325115]
This paper presents explicit non-asymptotic bounds on the forward diffusion error in total variation (TV)
We parametrise multi-modal data distributions in terms of the distance $R$ to their furthest modes and consider forward diffusions with additive and multiplicative noise.
arXiv Detail & Related papers (2024-08-25T10:28:31Z) - A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
We develop non-asymptotic convergence theory for a diffusion-based sampler.
We prove that $d/varepsilon$ are sufficient to approximate the target distribution to within $varepsilon$ total-variation distance.
Our results also characterize how $ell$ score estimation errors affect the quality of the data generation processes.
arXiv Detail & Related papers (2024-08-05T09:02:24Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - AdjointDEIS: Efficient Gradients for Diffusion Models [2.0795007613453445]
We show that continuous adjoint equations for diffusion SDEs actually simplify to a simple ODE.
We also demonstrate the effectiveness of AdjointDEIS for guided generation with an adversarial attack in the form of the face morphing problem.
arXiv Detail & Related papers (2024-05-23T19:51:33Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
Conditional diffusion models serve as the foundation of modern image synthesis and find extensive application in fields like computational biology and reinforcement learning.
Despite the empirical success, theory of conditional diffusion models is largely missing.
This paper bridges the gap by presenting a sharp statistical theory of distribution estimation using conditional diffusion models.
arXiv Detail & Related papers (2024-03-18T17:08:24Z) - Consistency Model is an Effective Posterior Sample Approximation for Diffusion Inverse Solvers [28.678613691787096]
Previous approximations rely on the posterior means, which may not lie in the support of the image distribution.
We introduce a novel approach for posterior approximation that guarantees to generate valid samples within the support of the image distribution.
arXiv Detail & Related papers (2024-02-09T02:23:47Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - Nearly $d$-Linear Convergence Bounds for Diffusion Models via Stochastic
Localization [40.808942894229325]
We provide the first convergence bounds which are linear in the data dimension.
We show that diffusion models require at most $tilde O(fracd log2(1/delta)varepsilon2)$ steps to approximate an arbitrary distribution.
arXiv Detail & Related papers (2023-08-07T16:01:14Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Diffusion models as plug-and-play priors [98.16404662526101]
We consider the problem of inferring high-dimensional data $mathbfx$ in a model that consists of a prior $p(mathbfx)$ and an auxiliary constraint $c(mathbfx,mathbfy)$.
The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise.
arXiv Detail & Related papers (2022-06-17T21:11:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.