Bayesian Inference Under Differential Privacy: Prior Selection Considerations with Application to Univariate Gaussian Data and Regression
- URL: http://arxiv.org/abs/2405.13801v1
- Date: Wed, 22 May 2024 16:27:20 GMT
- Title: Bayesian Inference Under Differential Privacy: Prior Selection Considerations with Application to Univariate Gaussian Data and Regression
- Authors: Zeki Kazan, Jerome P. Reiter,
- Abstract summary: We show that analysts can take constraints imposed by the bounds into account when specifying prior distributions.
We provide theoretical and empirical results regarding what classes of default priors produce valid inference for a differentially private release.
- Score: 0.3683202928838613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe Bayesian inference for the mean and variance of bounded data protected by differential privacy and modeled as Gaussian. Using this setting, we demonstrate that analysts can and should take the constraints imposed by the bounds into account when specifying prior distributions. Additionally, we provide theoretical and empirical results regarding what classes of default priors produce valid inference for a differentially private release in settings where substantial prior information is not available. We discuss how these results can be applied to Bayesian inference for regression with differentially private data.
Related papers
- Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.
We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Differentially Private Covariate Balancing Causal Inference [8.133739801185271]
Differential privacy is the leading mathematical framework for privacy protection.
Our algorithm produces both point and interval estimators with statistical guarantees, such as consistency and rate optimality, under a given privacy budget.
arXiv Detail & Related papers (2024-10-18T18:02:13Z) - Optimal Federated Learning for Nonparametric Regression with Heterogeneous Distributed Differential Privacy Constraints [5.3595271893779906]
We study federated learning for nonparametric regression in the context of distributed samples across different servers.
Findings shed light on the tradeoff between statistical accuracy and privacy preservation.
arXiv Detail & Related papers (2024-06-10T19:34:07Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Initialization Matters: Privacy-Utility Analysis of Overparameterized
Neural Networks [72.51255282371805]
We prove a privacy bound for the KL divergence between model distributions on worst-case neighboring datasets.
We find that this KL privacy bound is largely determined by the expected squared gradient norm relative to model parameters during training.
arXiv Detail & Related papers (2023-10-31T16:13:22Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
We propose simulation-based inference methods from privacy-protected datasets.
We illustrate our methods on discrete time-series data under an infectious disease model and with ordinary linear regression models.
arXiv Detail & Related papers (2023-10-19T14:34:17Z) - Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis
Testing: A Lesson From Fano [83.5933307263932]
We study data reconstruction attacks for discrete data and analyze it under the framework of hypothesis testing.
We show that if the underlying private data takes values from a set of size $M$, then the target privacy parameter $epsilon$ can be $O(log M)$ before the adversary gains significant inferential power.
arXiv Detail & Related papers (2022-10-24T23:50:12Z) - Debugging Differential Privacy: A Case Study for Privacy Auditing [60.87570714269048]
We show that auditing can also be used to find flaws in (purportedly) differentially private schemes.
In this case study, we audit a recent open source implementation of a differentially private deep learning algorithm and find, with 99.99999999% confidence, that the implementation does not satisfy the claimed differential privacy guarantee.
arXiv Detail & Related papers (2022-02-24T17:31:08Z) - Differential Privacy of Dirichlet Posterior Sampling [0.0]
We study the inherent privacy of releasing a single draw from a Dirichlet posterior distribution.
With the notion of truncated concentrated differential privacy (tCDP), we are able to derive a simple privacy guarantee of the Dirichlet posterior sampling.
arXiv Detail & Related papers (2021-10-03T07:41:19Z) - Non-parametric Differentially Private Confidence Intervals for the
Median [3.205141100055992]
This paper proposes and evaluates several strategies to compute valid differentially private confidence intervals for the median.
We also illustrate that addressing both sources of uncertainty--the error from sampling and the error from protecting the output--should be preferred over simpler approaches that incorporate the uncertainty in a sequential fashion.
arXiv Detail & Related papers (2021-06-18T19:45:37Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z) - Differentially Private Bayesian Inference for Generalized Linear Models [21.942149563564968]
Generalized linear models (GLMs) such as logistic regression are among the most widely used arms in data analyst's repertoire.
We introduce a generic noise-aware DP Bayesian inference method for a GLM, given a noisy sum of summary statistics.
We experimentally demonstrate that the posteriors obtained from our model, while adhering to strong privacy guarantees, are close to the non-private posteriors.
arXiv Detail & Related papers (2020-11-01T10:38:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.